Files
pitxft/fm_mpx.c
2021-06-14 22:45:03 +02:00

269 lines
7.0 KiB
C

/*
PiFmAdv - Advanced FM transmitter for the Raspberry Pi
Copyright (C) 2017 Miegl
See https://github.com/Miegl/PiFmAdv
*/
#include <sndfile.h>
#include <stdlib.h>
#include <strings.h>
#include <math.h>
#include "rds.h"
#define PI 3.14159265359
#define FIR_HALF_SIZE 30
#define FIR_SIZE (2*FIR_HALF_SIZE-1)
size_t length;
// coefficients of the low-pass FIR filter
double low_pass_fir[FIR_HALF_SIZE];
double carrier_38[] = {0.0, 0.8660254037844386, 0.8660254037844388, 1.2246467991473532e-16, -0.8660254037844384, -0.8660254037844386};
double carrier_19[] = {0.0, 0.5, 0.8660254037844386, 1.0, 0.8660254037844388, 0.5, 1.2246467991473532e-16, -0.5, -0.8660254037844384, -1.0, -0.8660254037844386, -0.5};
int phase_38 = 0;
int phase_19 = 0;
double downsample_factor;
double *audio_buffer;
int audio_index = 0;
int audio_len = 0;
double audio_pos;
double fir_buffer_mono[FIR_SIZE] = {0};
double fir_buffer_stereo[FIR_SIZE] = {0};
int fir_index = 0;
int channels;
double *last_buffer_val;
double preemphasis_prewarp;
double preemphasis_coefficient;
SNDFILE *inf;
double *alloc_empty_buffer(size_t length) {
double *p = malloc(length * sizeof(double));
if(p == NULL) return NULL;
bzero(p, length * sizeof(double));
return p;
}
int fm_mpx_open(char *filename, size_t len, int cutoff_freq, int preemphasis_corner_freq, int srate, int nochan) {
length = len;
if(filename != NULL) {
// Open the input file
SF_INFO sfinfo;
if(filename[0] == '-' && srate > 0 && nochan > 0) {
printf("Using stdin for raw audio input at %d Hz.\n",srate);
sfinfo.samplerate = srate;
sfinfo.format = SF_FORMAT_RAW | SF_FORMAT_PCM_16 | SF_ENDIAN_LITTLE;
sfinfo.channels = nochan;
sfinfo.frames = 0;
}
// stdin or file on the filesystem?
if(filename[0] == '-') {
if(!(inf = sf_open_fd(fileno(stdin), SFM_READ, &sfinfo, 0))) {
fprintf(stderr, "Error: could not open stdin for audio input.\n");
return -1;
} else {
printf("Using stdin for audio input.\n");
}
} else {
if(!(inf = sf_open(filename, SFM_READ, &sfinfo))) {
fprintf(stderr, "Error: could not open input file %s.\n", filename);
return -1;
} else {
printf("Using audio file: %s\n", filename);
}
}
int in_samplerate = sfinfo.samplerate;
downsample_factor = 228000. / in_samplerate;
printf("Input: %d Hz, upsampling factor: %.2f\n", in_samplerate, downsample_factor);
channels = sfinfo.channels;
if(channels > 1) {
printf("%d channels, generating stereo multiplex.\n", channels);
} else {
printf("1 channel, monophonic operation.\n");
}
// Create the preemphasis
last_buffer_val = (double*) malloc(sizeof(double)*channels);
for(int i=0; i<channels; i++) last_buffer_val[i] = 0;
preemphasis_prewarp = tan(PI*preemphasis_corner_freq/in_samplerate);
preemphasis_coefficient = (1.0 + (1.0 - preemphasis_prewarp)/(1.0 + preemphasis_prewarp))/2.0;
printf("Created preemphasis with cutoff at %.1i Hz\n", preemphasis_corner_freq);
// Create the low-pass FIR filter
if(in_samplerate < cutoff_freq) cutoff_freq = in_samplerate;
// Here we divide this coefficient by two because it will be counted twice
// when applying the filter
low_pass_fir[FIR_HALF_SIZE-1] = 2 * cutoff_freq / 228000 /2;
// Only store half of the filter since it is symmetric
for(int i=1; i<FIR_HALF_SIZE; i++) {
low_pass_fir[FIR_HALF_SIZE-1-i] =
sin(2 * PI * cutoff_freq * i / 228000) / (PI * i) // sinc
* (.54 - .46 * cos(2*PI * (i+FIR_HALF_SIZE) / (2*FIR_HALF_SIZE))); // Hamming window
}
printf("Created low-pass FIR filter for audio channels, with cutoff at %.1i Hz\n", cutoff_freq);
audio_pos = downsample_factor;
audio_buffer = alloc_empty_buffer(length * channels);
if(audio_buffer == NULL) return -1;
}
else {
inf = NULL;
}
return 0;
}
// samples provided by this function are in 0..10: they need to be divided by
// 10 after.
int fm_mpx_get_samples(double *mpx_buffer, double *rds_buffer, float mpx, int rds, int wait) {
if(inf == NULL) {
if(rds) get_rds_samples(mpx_buffer, length);
return 0;
} else {
if(rds) get_rds_samples(rds_buffer, length);
}
for(int i=0; i<length; i++) {
if(audio_pos >= downsample_factor) {
audio_pos -= downsample_factor;
if(audio_len <= channels) {
for(int j=0; j<2; j++) { // one retry
audio_len = sf_read_double(inf, audio_buffer, length);
if (audio_len < 0) {
fprintf(stderr, "Error reading audio\n");
return -1;
}
if(audio_len == 0) {
if( sf_seek(inf, 0, SEEK_SET) < 0 ) {
if(wait) {
return 0;
} else {
fprintf(stderr, "Could not rewind in audio file, terminating\n");
return -1;
}
}
} else {
//apply preemphasis
int k;
int l;
double tmp;
for(k=0; k<audio_len; k+=channels) {
for(l=0; l<channels; l++) {
tmp = audio_buffer[k+l];
audio_buffer[k+l] = audio_buffer[k+l] - preemphasis_coefficient*last_buffer_val[l];
last_buffer_val[l] = tmp;
}
}
break;
}
}
audio_index = 0;
} else {
audio_index += channels;
audio_len -= channels;
}
}
// First store the current sample(s) into the FIR filter's ring buffer
if(channels == 0) {
fir_buffer_mono[fir_index] = audio_buffer[audio_index];
} else {
// In stereo operation, generate sum and difference signals
fir_buffer_mono[fir_index] =
audio_buffer[audio_index] + audio_buffer[audio_index+1];
fir_buffer_stereo[fir_index] =
audio_buffer[audio_index] - audio_buffer[audio_index+1];
}
fir_index++;
if(fir_index >= FIR_SIZE) fir_index = 0;
// Now apply the FIR low-pass filter
/* As the FIR filter is symmetric, we do not multiply all
the coefficients independently, but two-by-two, thus reducing
the total number of multiplications by a factor of two
*/
double out_mono = 0;
double out_stereo = 0;
int ifbi = fir_index; // ifbi = increasing FIR Buffer Index
int dfbi = fir_index; // dfbi = decreasing FIR Buffer Index
for(int fi=0; fi<FIR_HALF_SIZE; fi++) { // fi = Filter Index
dfbi--;
if(dfbi < 0) dfbi = FIR_SIZE-1;
out_mono +=
low_pass_fir[fi] *
(fir_buffer_mono[ifbi] + fir_buffer_mono[dfbi]);
if(channels > 1) {
out_stereo +=
low_pass_fir[fi] *
(fir_buffer_stereo[ifbi] + fir_buffer_stereo[dfbi]);
}
ifbi++;
if(ifbi >= FIR_SIZE) ifbi = 0;
}
// End of FIR filter
if (channels>1) {
mpx_buffer[i] =
((mpx-2)/2) * out_mono +
((mpx-2)/2) * carrier_38[phase_38] * out_stereo +
1 * carrier_19[phase_19];
if (rds) {
mpx_buffer[i] += rds_buffer[i];
}
phase_19++;
phase_38++;
if(phase_19 >= 12) phase_19 = 0;
if(phase_38 >= 6) phase_38 = 0;
}
else {
mpx_buffer[i] =
(mpx-1) * out_mono;
if (rds) {
mpx_buffer[i] += rds_buffer[i];
}
}
audio_pos++;
}
return 0;
}
int fm_mpx_close() {
if(sf_close(inf) ) {
fprintf(stderr, "Error closing audio file");
}
if(audio_buffer != NULL) free(audio_buffer);
return 0;
}