Files
mud/mud.c
2016-02-29 15:35:04 +00:00

845 lines
19 KiB
C

#include "mud.h"
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <net/if.h>
#include <ifaddrs.h>
#include <sodium.h>
struct path_info {
uint64_t dt;
uint64_t time;
uint64_t send_time;
uint64_t count;
};
struct path_addr {
unsigned index;
union {
struct in_addr in;
struct in6_addr in6;
} bind;
struct sockaddr_storage peer;
};
struct path {
int up;
struct path_addr addr;
uint64_t dt;
uint64_t rdt;
uint64_t rtt;
int64_t sdt;
uint64_t limit;
uint64_t pong_time;
struct path_info recv;
struct path_info send;
struct path *next;
};
struct sock {
unsigned index;
char name[IF_NAMESIZE];
struct sock *next;
};
struct packet {
size_t size;
unsigned char data[2048];
};
struct queue {
struct packet *packet;
unsigned char start;
unsigned char end;
};
struct crypto {
crypto_aead_aes256gcm_state key;
};
struct mud {
int fd;
uint64_t base;
struct queue tx;
struct queue rx;
struct sock *sock;
struct path *path;
struct crypto crypto;
};
static
void mud_write48 (unsigned char *dst, uint64_t src)
{
dst[0] = (unsigned char)(UINT64_C(255)&(src));
dst[1] = (unsigned char)(UINT64_C(255)&(src>>8));
dst[2] = (unsigned char)(UINT64_C(255)&(src>>16));
dst[3] = (unsigned char)(UINT64_C(255)&(src>>24));
dst[4] = (unsigned char)(UINT64_C(255)&(src>>32));
dst[5] = (unsigned char)(UINT64_C(255)&(src>>40));
}
static
uint64_t mud_read48 (const unsigned char *src)
{
return ((uint64_t)src[0])
| ((uint64_t)src[1]<<8)
| ((uint64_t)src[2]<<16)
| ((uint64_t)src[3]<<24)
| ((uint64_t)src[4]<<32)
| ((uint64_t)src[5]<<40);
}
static
uint64_t mud_now (struct mud *mud)
{
struct timeval now;
gettimeofday(&now, NULL);
return (now.tv_sec*UINT64_C(1000000)+now.tv_usec)-mud->base;
}
static
ssize_t mud_send_path (struct mud *mud, struct path *path, uint64_t now, void *data, size_t size)
{
if (!size)
return 0;
unsigned char ctrl[1024];
struct iovec iov = {
.iov_base = data,
.iov_len = size,
};
struct msghdr msg = {
.msg_name = &path->addr.peer,
.msg_namelen = sizeof(path->addr.peer),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = ctrl,
.msg_controllen = sizeof(ctrl),
};
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
if (path->addr.peer.ss_family == AF_INET) {
struct in_pktinfo ipi = {
.ipi_ifindex = path->addr.index,
.ipi_spec_dst = path->addr.bind.in,
};
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(ipi));
memcpy(CMSG_DATA(cmsg), &ipi, sizeof(ipi));
msg.msg_controllen = CMSG_SPACE(sizeof(ipi));
} else {
struct in6_pktinfo ipi6 = {
.ipi6_ifindex = path->addr.index,
.ipi6_addr = path->addr.bind.in6,
};
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(ipi6));
memcpy(CMSG_DATA(cmsg), &ipi6, sizeof(ipi6));
msg.msg_controllen = CMSG_SPACE(sizeof(ipi6));
}
ssize_t ret = sendmsg(mud->fd, &msg, 0);
if (ret > 0) {
path->send.time = now;
} else if ((ret == -1) &&
(errno != EAGAIN) &&
(errno != EINTR)) {
path->up = 0;
}
return ret;
}
static
int mud_set_nonblock (int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
if (flags == -1)
flags = 0;
return fcntl(fd, F_SETFL, flags|O_NONBLOCK);
}
static
int mud_sso_int (int fd, int level, int optname, int opt)
{
return setsockopt(fd, level, optname, &opt, sizeof(opt));
}
static
struct addrinfo *mud_addrinfo (const char *host, const char *port, int flags)
{
struct addrinfo *ai = NULL, hints = {
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_DGRAM,
.ai_protocol = IPPROTO_UDP,
.ai_flags = flags,
};
switch (getaddrinfo(host, port, &hints, &ai)) {
case 0:
return ai;
case EAI_SYSTEM:
break;
case EAI_FAIL:
case EAI_AGAIN:
errno = EAGAIN;
break;
case EAI_MEMORY:
errno = ENOMEM;
break;
default:
errno = EINVAL;
break;
}
return NULL;
}
static
int mud_cmp_addr (struct sockaddr *a, struct sockaddr *b)
{
if (a->sa_family != b->sa_family)
return 1;
if (a->sa_family == AF_INET) {
struct sockaddr_in *_a = (struct sockaddr_in *)a;
struct sockaddr_in *_b = (struct sockaddr_in *)b;
return ((_a->sin_port != _b->sin_port) ||
(memcmp(&_a->sin_addr.s_addr, &_b->sin_addr.s_addr,
sizeof(_a->sin_addr.s_addr))));
}
if (a->sa_family == AF_INET6) {
struct sockaddr_in6 *_a = (struct sockaddr_in6 *)a;
struct sockaddr_in6 *_b = (struct sockaddr_in6 *)b;
return ((_a->sin6_port != _b->sin6_port) ||
(memcmp(&_a->sin6_addr.s6_addr, &_b->sin6_addr.s6_addr,
sizeof(_a->sin6_addr.s6_addr))));
}
return 1;
}
static
struct sock *mud_get_sock (struct mud *mud, unsigned index)
{
struct sock *sock;
for (sock = mud->sock; sock; sock = sock->next) {
if (sock->index == index)
break;
}
return sock;
}
static
struct path *mud_get_path (struct mud *mud, int index, struct sockaddr *addr)
{
struct path *path;
for (path = mud->path; path; path = path->next) {
if ((path->addr.index == index) &&
(!mud_cmp_addr(addr, (struct sockaddr *)&path->addr.peer)))
break;
}
return path;
}
static
struct path *mud_new_path (struct mud *mud, unsigned index, struct sockaddr *addr)
{
struct path *path = mud_get_path(mud, index, addr);
if (path)
return path;
struct sock *sock = mud_get_sock(mud, index);
if (!sock)
return NULL;
path = calloc(1, sizeof(struct path));
if (!path)
return NULL;
struct ifaddrs *ifaddrs;
if (getifaddrs(&ifaddrs) == -1) {
free(path);
return NULL;
}
for (struct ifaddrs *ifa = ifaddrs; ifa; ifa = ifa->ifa_next) {
if (!ifa->ifa_addr)
continue;
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (strncmp(sock->name, ifa->ifa_name, sizeof(sock->name)))
continue;
switch (addr->sa_family) {
case AF_INET:
memcpy(&path->addr.peer, addr, sizeof(struct sockaddr_in));
memcpy(&path->addr.bind.in,
&((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr,
sizeof(struct in_addr));
break;
case AF_INET6:
memcpy(&path->addr.peer, addr, sizeof(struct sockaddr_in6));
memcpy(&path->addr.bind.in6,
&((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr.s6_addr,
sizeof(struct in6_addr));
break;
default:
freeifaddrs(ifaddrs);
free(path);
return NULL;
}
break;
}
freeifaddrs(ifaddrs);
path->addr.index = index;
path->next = mud->path;
mud->path = path;
return path;
}
int mud_peer (struct mud *mud, const char *host, const char *port)
{
if (!host || !port)
return -1;
struct addrinfo *p, *ai = mud_addrinfo(host, port, AI_NUMERICSERV);
if (!ai)
return -1;
for (p = ai; p; p = p->ai_next) {
struct sock *sock;
struct sockaddr_storage addr;
if (!p->ai_addr)
continue;
memcpy(&addr, p->ai_addr, p->ai_addrlen);
for (sock = mud->sock; sock; sock = sock->next)
mud_new_path(mud, sock->index, (struct sockaddr *)&addr);
}
freeaddrinfo(ai);
return 0;
}
int mud_bind (struct mud *mud, const char *name)
{
if (!name)
return -1;
const size_t len = strlen(name);
struct ifreq ifr = {0};
if (len >= sizeof(ifr.ifr_name))
return -1;
memcpy(ifr.ifr_name, name, len+1);
int fd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (fd == -1)
return -1;
int ret = ioctl(fd, SIOCGIFINDEX, &ifr);
int err = errno;
close(fd);
if (ret == -1) {
errno = err;
return -1;
}
struct sock *sock = mud_get_sock(mud, ifr.ifr_ifindex);
if (sock)
return 0;
sock = calloc(1, sizeof(struct sock));
if (!sock)
return -1;
memcpy(&sock->name, name, len+1);
sock->index = ifr.ifr_ifindex;
sock->next = mud->sock;
mud->sock = sock;
struct path *path;
for (path = mud->path; path; path = path->next)
mud_new_path(mud, ifr.ifr_ifindex, (struct sockaddr *)&path->addr.peer);
return 0;
}
struct mud *mud_create (const unsigned char *key, size_t key_size)
{
if (key_size != crypto_aead_aes256gcm_KEYBYTES) {
errno = EINVAL;
return NULL;
}
struct mud *mud = calloc(1, sizeof(struct mud));
if (!mud)
return NULL;
mud->fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (mud->fd == -1)
goto fail;
if (mud_sso_int(mud->fd, SOL_SOCKET, SO_REUSEADDR, 1) ||
mud_sso_int(mud->fd, IPPROTO_IP, IP_PKTINFO, 1) ||
mud_sso_int(mud->fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, 1) ||
mud_sso_int(mud->fd, IPPROTO_IPV6, IPV6_V6ONLY, 0))
goto fail;
mud->tx.packet = calloc(256, sizeof(struct packet));
mud->rx.packet = calloc(256, sizeof(struct packet));
if (!mud->tx.packet || !mud->rx.packet)
goto fail;
struct sockaddr_in6 sin6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(5000),
};
mud_set_nonblock(mud->fd);
if (bind(mud->fd, (struct sockaddr *)&sin6, sizeof(sin6)))
goto fail;
crypto_aead_aes256gcm_beforenm(&mud->crypto.key, key);
mud->base = mud_now(mud);
return mud;
fail:
if (mud) {
int err = errno;
mud_delete(mud);
errno = err;
}
return NULL;
}
int mud_get_fd (struct mud *mud)
{
return mud->fd;
}
void mud_delete (struct mud *mud)
{
if (!mud)
return;
free(mud->tx.packet);
free(mud->rx.packet);
while (mud->sock) {
struct sock *sock = mud->sock;
mud->sock = sock->next;
free(sock);
}
while (mud->path) {
struct path *path = mud->path;
mud->path = path->next;
free(path);
}
if (mud->fd != -1)
close(mud->fd);
free(mud);
}
static
int mud_encrypt (struct mud *mud, uint64_t nonce,
unsigned char *dst, size_t dst_size,
const unsigned char *src, size_t src_size,
size_t ad_size)
{
if (ad_size > src_size)
ad_size = src_size;
size_t size = src_size+6+crypto_aead_aes256gcm_ABYTES;
if (size > dst_size)
return 0;
unsigned char npub[crypto_aead_aes256gcm_NPUBBYTES] = {0};
mud_write48(npub, nonce);
memcpy(dst, npub, 6);
if (src)
memcpy(dst+6, src, ad_size);
crypto_aead_aes256gcm_encrypt_afternm(
dst+ad_size+6, NULL,
src+ad_size, src_size-ad_size,
dst, ad_size+6,
NULL,
npub,
(const crypto_aead_aes256gcm_state *)&mud->crypto.key);
return size;
}
static
int mud_decrypt (struct mud *mud, uint64_t *nonce,
unsigned char *dst, size_t dst_size,
const unsigned char *src, size_t src_size,
size_t ad_size)
{
size_t size = src_size-6-crypto_aead_aes256gcm_ABYTES;
if (ad_size > size)
ad_size = size;
if (size > dst_size)
return 0;
unsigned char npub[crypto_aead_aes256gcm_NPUBBYTES] = {0};
memcpy(npub, src, 6);
memcpy(dst, src+6, ad_size);
if (crypto_aead_aes256gcm_decrypt_afternm(
dst+ad_size, NULL,
NULL,
src+ad_size+6, src_size-ad_size-6,
src, ad_size+6,
npub,
(const crypto_aead_aes256gcm_state *)&mud->crypto.key))
return -1;
if (nonce)
*nonce = mud_read48(src);
return size;
}
int mud_pull (struct mud *mud)
{
unsigned char ctrl[1024];
for (int i = 0; i < 16; i++) {
unsigned char next = mud->rx.end+1;
if (mud->rx.start == next)
return 0;
struct packet *packet = &mud->rx.packet[mud->rx.end];
uint64_t now = mud_now(mud);
struct sockaddr_storage addr;
struct iovec iov = {
.iov_base = &packet->data,
.iov_len = sizeof(packet->data),
};
struct msghdr msg = {
.msg_name = &addr,
.msg_namelen = sizeof(addr),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = ctrl,
.msg_controllen = sizeof(ctrl),
};
ssize_t ret = recvmsg(mud->fd, &msg, 0);
if (ret <= 0)
break;
int cmsg_level = IPPROTO_IP;
int cmsg_type = IP_PKTINFO;
if (addr.ss_family == AF_INET6) {
struct sockaddr_in6 *sin6 =(struct sockaddr_in6 *)&addr;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
struct sockaddr_in sin;
sin.sin_family = AF_INET;
sin.sin_port = sin6->sin6_port;
memcpy(&sin.sin_addr.s_addr,
sin6->sin6_addr.s6_addr+12,
sizeof(sin.sin_addr.s_addr));
memcpy(&addr, &sin, sizeof(sin));
} else {
cmsg_level = IPPROTO_IPV6;
cmsg_type = IPV6_PKTINFO;
}
}
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
for (; cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if ((cmsg->cmsg_level == cmsg_level) &&
(cmsg->cmsg_type == cmsg_type))
break;
}
if (!cmsg)
continue;
unsigned index = 0;
if (cmsg_level == IPPROTO_IP) {
memcpy(&index,
&((struct in_pktinfo *)CMSG_DATA(cmsg))->ipi_ifindex,
sizeof(index));
} else {
memcpy(&index,
&((struct in6_pktinfo *)CMSG_DATA(cmsg))->ipi6_ifindex,
sizeof(index));
}
struct path *path = mud_get_path(mud, index, (struct sockaddr *)&addr);
if (!path) {
unsigned char tmp[sizeof(packet->data)];
if (mud_decrypt(mud, NULL, tmp, sizeof(tmp),
packet->data, (size_t)ret, 4) == -1)
continue;
path = mud_new_path(mud, index, (struct sockaddr *)&addr);
if (!path)
return -1;
}
path->up = 1;
path->addr.index = index;
if (cmsg_level == IPPROTO_IP) {
memcpy(&path->addr.bind.in,
&((struct in_pktinfo *)CMSG_DATA(cmsg))->ipi_addr,
sizeof(path->addr.bind.in));
} else {
memcpy(&path->addr.bind.in6,
&((struct in6_pktinfo *)CMSG_DATA(cmsg))->ipi6_addr,
sizeof(path->addr.bind.in6));
}
uint64_t send_time = mud_read48(packet->data);
int64_t dt = (now-path->recv.time)-(send_time-path->recv.send_time);
if (path->recv.time && path->recv.send_time && (dt > 0))
path->rdt = (path->rdt*UINT64_C(7)+dt)/UINT64_C(8);
path->recv.send_time = send_time;
path->recv.time = now;
if (!send_time) {
uint64_t send_time = mud_read48(&packet->data[6*1]);
uint64_t recv_time = mud_read48(&packet->data[6*2]);
uint64_t dt = mud_read48(&packet->data[6*3]);
path->dt = dt;
path->sdt = recv_time-send_time;
path->rtt = now-send_time;
continue;
}
if (!path->pong_time ||
(now-path->pong_time > UINT64_C(100000))) {
unsigned char tmp[256];
unsigned char pong[6*3];
memcpy(pong, packet->data, 6);
mud_write48(&pong[6*1], now);
mud_write48(&pong[6*2], path->rdt);
int ret = mud_encrypt(mud, 0, tmp, sizeof(tmp), pong, sizeof(pong), sizeof(pong));
if (ret > 0) {
mud_send_path(mud, path, now, tmp, (size_t)ret);
path->pong_time = now;
}
}
if (ret <= 6+crypto_aead_aes256gcm_ABYTES)
continue;
packet->size = ret;
mud->rx.end = next;
}
return 0;
}
int mud_recv (struct mud *mud, void *data, size_t size)
{
if (mud->rx.start == mud->rx.end) {
errno = EAGAIN;
return -1;
}
struct packet *packet = &mud->rx.packet[mud->rx.start];
int ret = mud_decrypt(mud, NULL, data, size,
packet->data, packet->size, 4);
mud->rx.start++;
if (ret == -1) {
errno = EINVAL;
return -1;
}
return ret;
}
int mud_push (struct mud *mud)
{
struct path *path;
for (path = mud->path; path; path = path->next) {
uint64_t now = mud_now(mud);
if ((path->send.time > path->recv.time) &&
(path->send.time-path->recv.time > UINT64_C(200000)))
path->up = 0;
if (path->send.time &&
(now-path->send.time < UINT64_C(1000000)))
continue;
unsigned char ping[32];
int ret = mud_encrypt(mud, now, ping, sizeof(ping), NULL, 0, 0);
if (ret > 0)
mud_send_path(mud, path, now, ping, (size_t)ret);
}
while (mud->tx.start != mud->tx.end) {
uint64_t now = mud_now(mud);
struct packet *packet = &mud->tx.packet[mud->tx.start];
struct path *path_min = NULL;
int64_t limit_min = INT64_MAX;
for (path = mud->path; path; path = path->next) {
if (!path->up)
continue;
int64_t limit = path->limit;
uint64_t elapsed = now-path->send.time;
if (limit > elapsed) {
limit += path->rtt/2-elapsed;
} else {
limit = path->rtt/2;
}
if (limit_min > limit) {
limit_min = limit;
path_min = path;
}
}
if (!path_min)
break;
ssize_t ret = mud_send_path(mud, path_min, now, packet->data, packet->size);
mud->tx.start++;
if (ret != packet->size)
break;
path_min->limit = limit_min;
}
return 0;
}
int mud_send (struct mud *mud, const void *data, size_t size)
{
if (!size)
return 0;
uint64_t now = mud_now(mud);
unsigned char next = mud->tx.end+1;
if (mud->tx.start == next) {
errno = EAGAIN;
return -1;
}
struct packet *packet = &mud->tx.packet[mud->tx.end];
int ret = mud_encrypt(mud, now,
packet->data, sizeof(packet->data),
data, size, 4);
if (!ret) {
errno = EMSGSIZE;
return -1;
}
packet->size = ret;
mud->tx.end = next;
return size;
}