Files
mud/mud.c
2016-06-22 17:54:17 +00:00

1167 lines
27 KiB
C

#include "mud.h"
#ifdef __APPLE__
#define __APPLE_USE_RFC_3542
#endif
#ifdef DEBUG
#include <stdio.h>
#define MUD_DEBUG(...) fprintf(stderr, __VA_ARGS__);
#else
#define MUD_DEBUG(...)
#endif
#include <stdlib.h>
#include <inttypes.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <ifaddrs.h>
#include <sodium.h>
#if defined IP_PKTINFO
#define MUD_PKTINFO IP_PKTINFO
#elif defined IP_RECVDSTADDR
#define MUD_PKTINFO IP_RECVDSTADDR
#endif
#define MUD_COUNT(X) (sizeof(X)/sizeof(X[0]))
#define MUD_TIME_SIZE (6U)
#define MUD_AD_SIZE (16U)
#define MUD_KEY_SIZE (32U)
#define MUD_NPUB_SIZE (MUD_TIME_SIZE)
#define MUD_PACKET_MIN_SIZE (MUD_NPUB_SIZE+MUD_AD_SIZE)
#define MUD_PONG_DATA_SIZE (3*MUD_TIME_SIZE)
#define MUD_PONG_SIZE (MUD_PONG_DATA_SIZE+MUD_PACKET_MIN_SIZE)
#define MUD_KEYX_DATA_SIZE (MUD_TIME_SIZE+2*crypto_scalarmult_BYTES)
#define MUD_KEYX_SIZE (MUD_KEYX_DATA_SIZE+MUD_PACKET_MIN_SIZE)
#define MUD_ONE_MSEC (UINT64_C(1000))
#define MUD_ONE_SEC (1000*MUD_ONE_MSEC)
#define MUD_ONE_MIN (60*MUD_ONE_SEC)
#ifndef MUD_SEND_TIMEOUT
#define MUD_SEND_TIMEOUT (10*MUD_ONE_SEC)
#endif
#ifndef MUD_PING_TIMEOUT
#define MUD_PING_TIMEOUT (100*MUD_ONE_MSEC)
#endif
#ifndef MUD_PONG_TIMEOUT
#define MUD_PONG_TIMEOUT (100*MUD_ONE_MSEC)
#endif
#ifndef MUD_TIME_TOLERANCE
#define MUD_TIME_TOLERANCE (10*MUD_ONE_MIN)
#endif
#ifndef MUD_KEYX_TIMEOUT
#define MUD_KEYX_TIMEOUT (60*MUD_ONE_MIN)
#endif
#ifndef MUD_PACKET_MAX_SIZE
#define MUD_PACKET_MAX_SIZE (1500U)
#endif
#ifndef MUD_PACKET_MASK
#define MUD_PACKET_MASK (0x3FFU)
#endif
#define MUD_PACKET_COUNT ((MUD_PACKET_MASK)+1)
#define MUD_PACKET_NEXT(X) (((X)+1)&(MUD_PACKET_MASK))
struct path {
struct {
unsigned up : 1;
unsigned active : 1;
} state;
unsigned index;
struct in_addr ifa_in_addr;
struct sockaddr_storage addr;
struct {
unsigned char data[256];
size_t size;
} ctrl;
uint64_t dt;
uint64_t rdt;
uint64_t rtt;
int64_t sdt;
uint64_t limit;
uint64_t recv_time;
uint64_t recv_send_time;
uint64_t send_time;
uint64_t ping_time;
uint64_t pong_time;
uint64_t last_time;
unsigned last_count;
struct path *next;
};
struct packet {
size_t size;
unsigned char data[MUD_PACKET_MAX_SIZE];
};
struct queue {
struct packet *packet;
unsigned start;
unsigned end;
};
struct crypto {
uint64_t time;
unsigned char secret[crypto_scalarmult_SCALARBYTES];
struct {
unsigned char secret[crypto_scalarmult_BYTES];
unsigned char send[crypto_scalarmult_BYTES];
unsigned char recv[crypto_scalarmult_BYTES];
} share;
struct {
unsigned char private[MUD_KEY_SIZE];
unsigned char old[MUD_KEY_SIZE];
unsigned char send[MUD_KEY_SIZE];
unsigned char recv[MUD_KEY_SIZE];
} key;
};
struct mud {
int fd;
uint64_t send_timeout;
uint64_t time_tolerance;
struct queue tx;
struct queue rx;
struct path *path;
struct crypto crypto;
};
static
void mud_write48 (unsigned char *dst, uint64_t src)
{
dst[0] = (unsigned char)(UINT64_C(255)&(src));
dst[1] = (unsigned char)(UINT64_C(255)&(src>>8));
dst[2] = (unsigned char)(UINT64_C(255)&(src>>16));
dst[3] = (unsigned char)(UINT64_C(255)&(src>>24));
dst[4] = (unsigned char)(UINT64_C(255)&(src>>32));
dst[5] = (unsigned char)(UINT64_C(255)&(src>>40));
}
static
uint64_t mud_read48 (const unsigned char *src)
{
return ((uint64_t)src[0])
| ((uint64_t)src[1]<<8)
| ((uint64_t)src[2]<<16)
| ((uint64_t)src[3]<<24)
| ((uint64_t)src[4]<<32)
| ((uint64_t)src[5]<<40);
}
static
uint64_t mud_now (struct mud *mud)
{
struct timeval now;
gettimeofday(&now, NULL);
return (now.tv_sec*MUD_ONE_SEC+now.tv_usec)&((UINT64_C(1)<<48)-1);
}
static
uint64_t mud_dt (uint64_t a, uint64_t b)
{
return (a >= b) ? a-b : b-a;
}
static
void mud_unmapv4 (struct sockaddr *addr)
{
if (addr->sa_family != AF_INET6)
return;
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr))
return;
struct sockaddr_in sin = {
.sin_family = AF_INET,
.sin_port = sin6->sin6_port,
};
memcpy(&sin.sin_addr.s_addr,
&sin6->sin6_addr.s6_addr[12],
sizeof(sin.sin_addr.s_addr));
memcpy(addr, &sin, sizeof(sin));
}
static
int mud_addrinfo (struct sockaddr_storage *addr, const char *host, int port)
{
struct sockaddr_in sin = {
.sin_family = AF_INET,
.sin_port = htons(port),
};
if (inet_pton(AF_INET, host, &sin.sin_addr) == 1) {
memcpy(addr, &sin, sizeof(sin));
return 0;
}
struct sockaddr_in6 sin6 = {
.sin6_family = AF_INET6,
.sin6_port = htons(port),
};
if (inet_pton(AF_INET6, host, &sin6.sin6_addr) == 1) {
memcpy(addr, &sin6, sizeof(sin6));
return 0;
}
errno = EINVAL;
return -1;
}
static
ssize_t mud_send_path (struct mud *mud, struct path *path, uint64_t now,
void *data, size_t size)
{
if (!size)
return 0;
struct iovec iov = {
.iov_base = data,
.iov_len = size,
};
struct msghdr msg = {
.msg_name = &path->addr,
.msg_namelen = sizeof(path->addr),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = path->ctrl.data,
.msg_controllen = path->ctrl.size,
};
ssize_t ret = sendmsg(mud->fd, &msg, 0);
if ((ret == (ssize_t)size) &&
(path->recv_time > path->send_time)) {
path->last_time = now;
path->last_count = 0;
}
path->send_time = now;
return ret;
}
static
int mud_set_nonblock (int fd)
{
int flags = fcntl(fd, F_GETFL, 0);
if (flags == -1)
flags = 0;
return fcntl(fd, F_SETFL, flags|O_NONBLOCK);
}
static
int mud_sso_int (int fd, int level, int optname, int opt)
{
return setsockopt(fd, level, optname, &opt, sizeof(opt));
}
static
int mud_cmp_addr (struct sockaddr *a, struct sockaddr *b)
{
if (a == b)
return 0;
if (a->sa_family != b->sa_family)
return 1;
if (a->sa_family == AF_INET) {
struct sockaddr_in *_a = (struct sockaddr_in *)a;
struct sockaddr_in *_b = (struct sockaddr_in *)b;
return ((_a->sin_port != _b->sin_port) ||
(memcmp(&_a->sin_addr, &_b->sin_addr, sizeof(_a->sin_addr))));
}
if (a->sa_family == AF_INET6) {
struct sockaddr_in6 *_a = (struct sockaddr_in6 *)a;
struct sockaddr_in6 *_b = (struct sockaddr_in6 *)b;
return ((_a->sin6_port != _b->sin6_port) ||
(memcmp(&_a->sin6_addr, &_b->sin6_addr, sizeof(_a->sin6_addr))));
}
return 1;
}
static
struct path *mud_get_path (struct mud *mud, int index, struct in_addr *ifa_in_addr, struct sockaddr *addr)
{
struct path *path;
for (path = mud->path; path; path = path->next) {
if (index) {
if (path->index != index)
continue;
} else if (ifa_in_addr) {
if (memcmp(&path->ifa_in_addr, ifa_in_addr, sizeof(struct in_addr)))
continue;
}
if (mud_cmp_addr(addr, (struct sockaddr *)&path->addr))
continue;
break;
}
return path;
}
static
void mud_set_path (struct path *path, unsigned index,
struct sockaddr *addr, struct sockaddr *ifa_addr)
{
struct msghdr msg = {
.msg_control = path->ctrl.data,
.msg_controllen = sizeof(path->ctrl.data),
};
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
path->index = index;
if (addr->sa_family == AF_INET) {
memmove(&path->addr, addr, sizeof(struct sockaddr_in));
memcpy(&path->ifa_in_addr,
&((struct sockaddr_in *)ifa_addr)->sin_addr,
sizeof(struct in_addr));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = MUD_PKTINFO;
#if defined IP_PKTINFO
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
memcpy(&((struct in_pktinfo *)CMSG_DATA(cmsg))->ipi_ifindex,
&index, sizeof(index));
memcpy(&((struct in_pktinfo *)CMSG_DATA(cmsg))->ipi_spec_dst,
&((struct sockaddr_in *)ifa_addr)->sin_addr,
sizeof(struct in_addr));
path->ctrl.size = CMSG_SPACE(sizeof(struct in_pktinfo));
#elif defined IP_RECVDSTADDR
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_addr));
memcpy(CMSG_DATA(cmsg),
&((struct sockaddr_in *)ifa_addr)->sin_addr,
sizeof(struct in_addr));
path->ctrl.size = CMSG_SPACE(sizeof(struct in_addr));
#endif
}
if (addr->sa_family == AF_INET6) {
memmove(&path->addr, addr, sizeof(struct sockaddr_in6));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
memcpy(&((struct in6_pktinfo *)CMSG_DATA(cmsg))->ipi6_ifindex,
&index, sizeof(index));
memcpy(&((struct in6_pktinfo *)CMSG_DATA(cmsg))->ipi6_addr,
&((struct sockaddr_in6 *)ifa_addr)->sin6_addr,
sizeof(struct in6_addr));
path->ctrl.size = CMSG_SPACE(sizeof(struct in6_pktinfo));
}
}
static
void mud_reset_path (struct path *path, unsigned index, struct sockaddr *addr)
{
char name[IF_NAMESIZE];
if (if_indextoname(index, name) != name)
return;
struct ifaddrs *ifaddrs = NULL;
if ((getifaddrs(&ifaddrs) == -1) || !ifaddrs)
return;
for (struct ifaddrs *ifa = ifaddrs; ifa; ifa = ifa->ifa_next) {
struct sockaddr *ifa_addr = ifa->ifa_addr;
if (!ifa_addr)
continue;
if (ifa_addr->sa_family != addr->sa_family)
continue;
if (strncmp(name, ifa->ifa_name, sizeof(name)))
continue;
mud_set_path(path, index, addr, ifa_addr);
break;
}
freeifaddrs(ifaddrs);
}
static
struct path *mud_new_path (struct mud *mud, unsigned index, struct sockaddr *addr)
{
struct path *path = mud_get_path(mud, index, NULL, addr);
if (path)
return path;
path = calloc(1, sizeof(struct path));
if (!path)
return NULL;
mud_reset_path(path, index, addr);
if (!path->index) {
free(path);
return NULL;
}
path->next = mud->path;
mud->path = path;
return path;
}
int mud_peer (struct mud *mud, const char *name, const char *host, int port)
{
if (!name || !host || !port) {
errno = EINVAL;
return -1;
}
const size_t len = strlen(name);
if (len >= IF_NAMESIZE) {
errno = EINVAL;
return -1;
}
unsigned index = if_nametoindex(name);
if (!index)
return -1;
struct sockaddr_storage addr;
if (mud_addrinfo(&addr, host, port))
return -1;
mud_unmapv4((struct sockaddr *)&addr);
struct path *path = mud_new_path(mud, index, (struct sockaddr *)&addr);
if (!path)
return -1;
path->state.active = 1;
return 0;
}
int mud_get_key (struct mud *mud, unsigned char *key, size_t *size)
{
if (!key || !size || (*size < MUD_KEY_SIZE)) {
errno = EINVAL;
return -1;
}
memcpy(key, mud->crypto.key.private, MUD_KEY_SIZE);
*size = MUD_KEY_SIZE;
return 0;
}
int mud_set_key (struct mud *mud, unsigned char *key, size_t size)
{
if (!key || (size < MUD_KEY_SIZE)) {
errno = EINVAL;
return -1;
}
memcpy(mud->crypto.key.private, key, MUD_KEY_SIZE);
memcpy(mud->crypto.key.old, key, MUD_KEY_SIZE);
memcpy(mud->crypto.key.send, key, MUD_KEY_SIZE);
memcpy(mud->crypto.key.recv, key, MUD_KEY_SIZE);
return 0;
}
int mud_set_send_timeout_msec (struct mud *mud, unsigned msec)
{
if (!msec) {
errno = EINVAL;
return -1;
}
mud->send_timeout = msec*MUD_ONE_MSEC;
return 0;
}
int mud_set_time_tolerance_sec (struct mud *mud, unsigned sec)
{
if (!sec) {
errno = EINVAL;
return -1;
}
mud->time_tolerance = sec*MUD_ONE_SEC;
return 0;
}
static
int mud_setup_socket (int fd, int v4, int v6)
{
if ((mud_sso_int(fd, SOL_SOCKET, SO_REUSEADDR, 1)) ||
(v4 && mud_sso_int(fd, IPPROTO_IP, MUD_PKTINFO, 1)) ||
(v6 && mud_sso_int(fd, IPPROTO_IPV6, IPV6_RECVPKTINFO, 1)) ||
(v6 && mud_sso_int(fd, IPPROTO_IPV6, IPV6_V6ONLY, !v4)) ||
(mud_set_nonblock(fd)))
return -1;
// mud_sso_int(fd, SOL_SOCKET, SO_RCVBUF, 1<<24);
// mud_sso_int(fd, SOL_SOCKET, SO_SNDBUF, 1<<24);
return 0;
}
static
int mud_create_socket (int port, int v4, int v6)
{
struct sockaddr_storage addr;
if (mud_addrinfo(&addr, v6 ? "::" : "0.0.0.0", port))
return -1;
int fd = socket(addr.ss_family, SOCK_DGRAM, IPPROTO_UDP);
if (fd == -1)
return -1;
socklen_t addrlen = (addr.ss_family == AF_INET)
? sizeof(struct sockaddr_in)
: sizeof(struct sockaddr_in6);
if (mud_setup_socket(fd, v4, v6) ||
bind(fd, (struct sockaddr *)&addr, addrlen)) {
int err = errno;
close(fd);
errno = err;
return -1;
}
return fd;
}
static
int mud_create_queue (struct queue *queue)
{
queue->packet = calloc(MUD_PACKET_COUNT, sizeof(struct packet));
if (!queue->packet)
return -1;
return 0;
}
struct mud *mud_create (int port, int v4, int v6)
{
if (sodium_init() == -1)
return NULL;
struct mud *mud = calloc(1, sizeof(struct mud));
if (!mud)
return NULL;
mud->fd = mud_create_socket(port, v4, v6);
if (mud->fd == -1) {
mud_delete(mud);
return NULL;
}
if (mud_create_queue(&mud->tx) ||
mud_create_queue(&mud->rx)) {
mud_delete(mud);
return NULL;
}
mud->send_timeout = MUD_SEND_TIMEOUT;
mud->time_tolerance = MUD_TIME_TOLERANCE;
unsigned char key[MUD_KEY_SIZE];
randombytes_buf(key, sizeof(key));
mud_set_key(mud, key, sizeof(key));
return mud;
}
int mud_get_fd (struct mud *mud)
{
return mud->fd;
}
void mud_delete (struct mud *mud)
{
if (!mud)
return;
free(mud->tx.packet);
free(mud->rx.packet);
while (mud->path) {
struct path *path = mud->path;
mud->path = path->next;
free(path);
}
if (mud->fd != -1) {
int err = errno;
close(mud->fd);
errno = err;
}
free(mud);
}
static
int mud_encrypt (struct mud *mud, uint64_t nonce,
unsigned char *dst, size_t dst_size,
const unsigned char *src, size_t src_size,
size_t ad_size)
{
if (ad_size > src_size)
ad_size = src_size;
size_t size = src_size+MUD_PACKET_MIN_SIZE;
if (size > dst_size)
return 0;
unsigned char npub[crypto_aead_chacha20poly1305_NPUBBYTES] = {0};
mud_write48(npub, nonce);
memcpy(dst, npub, MUD_NPUB_SIZE);
if (src)
memcpy(dst+MUD_NPUB_SIZE, src, ad_size);
crypto_aead_chacha20poly1305_encrypt(
dst+ad_size+MUD_NPUB_SIZE, NULL,
src+ad_size, src_size-ad_size,
dst, ad_size+MUD_NPUB_SIZE,
NULL,
npub,
mud->crypto.key.send);
return size;
}
static
int mud_decrypt (struct mud *mud, uint64_t *nonce,
unsigned char *dst, size_t dst_size,
const unsigned char *src, size_t src_size,
size_t ad_size)
{
size_t size = src_size-MUD_PACKET_MIN_SIZE;
if (ad_size > size)
ad_size = size;
if (size > dst_size)
return 0;
unsigned char npub[crypto_aead_chacha20poly1305_NPUBBYTES] = {0};
memcpy(npub, src, MUD_NPUB_SIZE);
memcpy(dst, src+MUD_NPUB_SIZE, ad_size);
unsigned char *keys[] = {
mud->crypto.key.private,
mud->crypto.key.old,
mud->crypto.key.recv,
};
int i = MUD_COUNT(keys);
while ((i-- > 0) &&
crypto_aead_chacha20poly1305_decrypt(
dst+ad_size, NULL,
NULL,
src+ad_size+MUD_NPUB_SIZE, src_size-ad_size-MUD_NPUB_SIZE,
src, ad_size+MUD_NPUB_SIZE,
npub,
keys[i]));
if (i == -1)
return -1;
if (nonce)
*nonce = mud_read48(src);
return size;
}
int mud_can_pull (struct mud *mud)
{
return (mud->rx.start != MUD_PACKET_NEXT(mud->rx.end));
}
int mud_can_push (struct mud *mud)
{
return (mud->tx.start != mud->tx.end);
}
int mud_is_up (struct mud *mud)
{
struct path *path;
int ret = 0;
for (path = mud->path; path; path = path->next)
ret += path->state.up;
return ret;
}
static
struct cmsghdr *mud_get_pktinfo (struct msghdr *msg, int family)
{
int cmsg_level = IPPROTO_IP;
int cmsg_type = MUD_PKTINFO;
if (family == AF_INET6) {
cmsg_level = IPPROTO_IPV6;
cmsg_type = IPV6_PKTINFO;
}
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
if ((cmsg->cmsg_level == cmsg_level) &&
(cmsg->cmsg_type == cmsg_type))
return cmsg;
}
return NULL;
}
static
void mud_ping_path (struct mud *mud, struct path *path, uint64_t now)
{
if (now-path->ping_time < MUD_PING_TIMEOUT)
return;
unsigned char ping[MUD_PACKET_MIN_SIZE];
int ret = mud_encrypt(mud, now, ping, sizeof(ping), NULL, 0, 0);
if (ret <= 0)
return;
mud_send_path(mud, path, now, ping, (size_t)ret);
path->ping_time = now;
}
static
void mud_pong_path (struct mud *mud, struct path *path, uint64_t now)
{
if (now-path->pong_time < MUD_PONG_TIMEOUT)
return;
unsigned char pong[MUD_PONG_SIZE];
unsigned char data[MUD_PONG_DATA_SIZE];
mud_write48(data, now);
mud_write48(&data[MUD_TIME_SIZE], path->recv_send_time);
mud_write48(&data[MUD_TIME_SIZE*2], path->rdt);
int ret = mud_encrypt(mud, 0, pong, sizeof(pong),
data, sizeof(data), sizeof(data));
if (ret <= 0)
return;
mud_send_path(mud, path, now, pong, (size_t)ret);
path->pong_time = now;
}
static
void mud_keyx_path (struct mud *mud, struct path *path, uint64_t now)
{
unsigned char keyx[MUD_KEYX_SIZE];
unsigned char data[MUD_KEYX_DATA_SIZE];
mud_write48(data, now);
memcpy(&data[MUD_TIME_SIZE],
mud->crypto.share.send,
sizeof(mud->crypto.share.send));
memcpy(&data[MUD_TIME_SIZE+sizeof(mud->crypto.share.send)],
mud->crypto.share.recv,
sizeof(mud->crypto.share.recv));
int ret = mud_encrypt(mud, 0, keyx, sizeof(keyx),
data, sizeof(data), sizeof(data));
if (ret <= 0)
return;
mud_send_path(mud, path, now, keyx, (size_t)ret);
mud->crypto.time = now;
}
static
void mud_recv_keyx (struct mud *mud, struct path *path, uint64_t now, unsigned char *data, size_t size)
{
if ((memcmp(mud->crypto.share.send, &data[crypto_scalarmult_BYTES], crypto_scalarmult_BYTES)) ||
(memcmp(mud->crypto.share.recv, data, crypto_scalarmult_BYTES))) {
memcpy(mud->crypto.share.recv, data, crypto_scalarmult_BYTES);
mud_keyx_path(mud, path, now);
return;
}
if (crypto_scalarmult(mud->crypto.share.secret, mud->crypto.secret, mud->crypto.share.recv))
return;
unsigned char tmp[MUD_KEY_SIZE];
crypto_generichash(mud->crypto.key.send, MUD_KEY_SIZE,
(unsigned char *)&mud->crypto.share, sizeof(mud->crypto.share),
mud->crypto.key.private, MUD_KEY_SIZE);
memcpy(tmp, mud->crypto.share.recv, sizeof(tmp));
memcpy(mud->crypto.share.recv, mud->crypto.share.send, sizeof(tmp));
memcpy(mud->crypto.share.send, tmp, sizeof(tmp));
memcpy(mud->crypto.key.old, mud->crypto.key.recv, MUD_KEY_SIZE);
crypto_generichash(mud->crypto.key.recv, MUD_KEY_SIZE,
(unsigned char *)&mud->crypto.share, sizeof(mud->crypto.share),
mud->crypto.key.private, MUD_KEY_SIZE);
sodium_memzero(mud->crypto.secret, sizeof(mud->crypto.secret));
sodium_memzero(&mud->crypto.share, sizeof(mud->crypto.share));
}
int mud_pull (struct mud *mud)
{
unsigned char ctrl[256];
while (1) {
unsigned next = MUD_PACKET_NEXT(mud->rx.end);
if (mud->rx.start == next) {
errno = ENOBUFS;
return -1;
}
struct packet *packet = &mud->rx.packet[mud->rx.end];
struct sockaddr_storage addr;
struct iovec iov = {
.iov_base = &packet->data,
.iov_len = sizeof(packet->data),
};
struct msghdr msg = {
.msg_name = &addr,
.msg_namelen = sizeof(addr),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = ctrl,
.msg_controllen = sizeof(ctrl),
};
ssize_t ret = recvmsg(mud->fd, &msg, 0);
if (ret <= (ssize_t)0)
return (int)ret;
if (ret < (ssize_t)MUD_PACKET_MIN_SIZE)
continue;
uint64_t now = mud_now(mud);
uint64_t send_time = mud_read48(packet->data);
int mud_packet = !send_time;
if (mud_packet) {
if (ret < (ssize_t)(MUD_TIME_SIZE+MUD_PACKET_MIN_SIZE))
continue;
send_time = mud_read48(&packet->data[MUD_TIME_SIZE]);
}
if (mud_dt(now, send_time) >= mud->time_tolerance)
continue;
if (mud_packet || (ret == (ssize_t)MUD_PACKET_MIN_SIZE)) {
unsigned char tmp[sizeof(packet->data)];
if (mud_decrypt(mud, NULL, tmp, sizeof(tmp),
packet->data, (size_t)ret, (size_t)ret) == -1)
continue;
}
mud_unmapv4((struct sockaddr *)&addr);
struct cmsghdr *cmsg = mud_get_pktinfo(&msg, addr.ss_family);
if (!cmsg)
continue;
unsigned index = 0;
struct in_addr ifa_in_addr;
if (cmsg->cmsg_level == IPPROTO_IP) {
#if defined IP_PKTINFO
memcpy(&index,
&((struct in_pktinfo *)CMSG_DATA(cmsg))->ipi_ifindex,
sizeof(index));
#elif defined IP_RECVDSTADDR
memcpy(&ifa_in_addr,
(struct in_addr *)CMSG_DATA(cmsg),
sizeof(struct in_addr));
#endif
}
if (cmsg->cmsg_level == IPPROTO_IPV6) {
memcpy(&index,
&((struct in6_pktinfo *)CMSG_DATA(cmsg))->ipi6_ifindex,
sizeof(index));
}
struct path *path = mud_get_path(mud, index, &ifa_in_addr, (struct sockaddr *)&addr);
if (!path) {
if (mud_packet && (ret == (ssize_t)MUD_PONG_SIZE))
continue;
unsigned char tmp[sizeof(packet->data)];
if (mud_decrypt(mud, NULL, tmp, sizeof(tmp),
packet->data, (size_t)ret, 4) == -1)
continue;
path = mud_new_path(mud, index, (struct sockaddr *)&addr);
if (!path)
return -1;
}
path->state.up = 1;
int64_t dt = (now-path->recv_time)-(send_time-path->recv_send_time);
if (path->recv_time && path->recv_send_time && (dt > 0))
path->rdt = (path->rdt*UINT64_C(7)+dt)/UINT64_C(8);
path->recv_send_time = send_time;
path->recv_time = now;
if (mud_packet && (ret == (ssize_t)MUD_PONG_SIZE)) {
uint64_t old_send_time = mud_read48(&packet->data[MUD_TIME_SIZE*2]);
uint64_t dt = mud_read48(&packet->data[MUD_TIME_SIZE*3]);
path->dt = dt;
path->sdt = send_time-old_send_time;
path->rtt = now-old_send_time;
continue;
}
mud_pong_path(mud, path, now);
if (mud_packet) {
if (ret == (ssize_t)MUD_KEYX_SIZE)
mud_recv_keyx(mud, path, now, &packet->data[2*MUD_TIME_SIZE], ret-2*MUD_TIME_SIZE);
continue;
}
if (ret == (ssize_t)MUD_PACKET_MIN_SIZE)
continue;
packet->size = ret;
mud->rx.end = next;
}
return 0;
}
int mud_recv (struct mud *mud, void *data, size_t size)
{
if (mud->rx.start == mud->rx.end) {
errno = EAGAIN;
return -1;
}
struct packet *packet = &mud->rx.packet[mud->rx.start];
int ret = mud_decrypt(mud, NULL, data, size,
packet->data, packet->size, 4);
mud->rx.start = MUD_PACKET_NEXT(mud->rx.start);
if (ret == -1) {
errno = EINVAL;
return -1;
}
return ret;
}
int mud_push (struct mud *mud)
{
struct path *path;
for (path = mud->path; path; path = path->next) {
uint64_t now = mud_now(mud);
if ((path->last_time) &&
(path->send_time > path->last_time) &&
(path->send_time-path->last_time
> MUD_PONG_TIMEOUT+path->rtt+(path->rtt>>1))) {
if (path->last_count == 4) {
path->last_time = 0;
path->last_count = 0;
path->state.up = 0;
} else {
path->last_time = path->send_time;
path->last_count++;
}
}
if (!path->state.active)
continue;
if (path->state.up && (now-mud->crypto.time >= MUD_KEYX_TIMEOUT)) {
randombytes_buf(mud->crypto.secret, sizeof(mud->crypto.secret));
crypto_scalarmult_base(mud->crypto.share.send, mud->crypto.secret);
memset(mud->crypto.share.recv, 0, sizeof(mud->crypto.share.recv));
mud_keyx_path(mud, path, now);
continue;
}
if ((path->send_time) &&
(!path->last_count) &&
(now > path->send_time) &&
(now-path->send_time) < mud->send_timeout)
continue;
mud_reset_path(path, path->index, (struct sockaddr *)&path->addr);
mud_ping_path(mud, path, now);
}
while (mud->tx.start != mud->tx.end) {
uint64_t now = mud_now(mud);
struct packet *packet = &mud->tx.packet[mud->tx.start];
struct path *path_min = NULL;
int64_t limit_min = INT64_MAX;
for (path = mud->path; path; path = path->next) {
if (!path->state.up)
continue;
int64_t limit = path->limit;
uint64_t elapsed = now-path->send_time;
if (limit > elapsed) {
limit += path->rtt/2-elapsed;
} else {
limit = path->rtt/2;
}
if (limit_min > limit) {
limit_min = limit;
path_min = path;
}
}
if (!path_min)
break;
ssize_t ret = mud_send_path(mud, path_min, now, packet->data, packet->size);
mud->tx.start = MUD_PACKET_NEXT(mud->tx.start);
if (ret != packet->size)
break;
path_min->limit = limit_min;
}
return 0;
}
int mud_send (struct mud *mud, const void *data, size_t size)
{
if (!size)
return 0;
unsigned next = MUD_PACKET_NEXT(mud->tx.end);
if (mud->tx.start == next) {
errno = ENOBUFS;
return -1;
}
struct packet *packet = &mud->tx.packet[mud->tx.end];
int ret = mud_encrypt(mud, mud_now(mud),
packet->data, sizeof(packet->data),
data, size, 4);
if (!ret) {
errno = EMSGSIZE;
return -1;
}
packet->size = ret;
mud->tx.end = next;
return size;
}