1642 lines
39 KiB
C
1642 lines
39 KiB
C
#include "common.h"
|
|
|
|
#include "buffer.h"
|
|
#include "ip.h"
|
|
#include "str.h"
|
|
#include "option.h"
|
|
#include "tun.h"
|
|
#include "db.h"
|
|
#include "state.h"
|
|
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <signal.h>
|
|
#include <poll.h>
|
|
#include <fcntl.h>
|
|
#include <time.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/time.h>
|
|
|
|
#ifndef __FAVOR_BSD
|
|
#define __FAVOR_BSD
|
|
#define GT_FAKE_BSD
|
|
#endif
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#ifdef GT_FAKE_BSD
|
|
#undef GT_FAKE_BSD
|
|
#undef __FAVOR_BSD
|
|
#endif
|
|
|
|
#include <arpa/inet.h>
|
|
#include <netdb.h>
|
|
|
|
#include <sodium.h>
|
|
|
|
#ifdef __APPLE__
|
|
#include <mach/mach_time.h>
|
|
#endif
|
|
|
|
#ifndef O_CLOEXEC
|
|
#define O_CLOEXEC 0
|
|
#endif
|
|
|
|
#define GT_MTU_MAX (1500)
|
|
#define GT_PKT_MAX (32*1024)
|
|
#define GT_TUNR_SIZE (GT_PKT_MAX-16-2)
|
|
#define GT_TUNW_SIZE (GT_PKT_MAX)
|
|
|
|
#define GT_ABYTES (16)
|
|
#define GT_KEYBYTES (32)
|
|
|
|
#define MPTCP_ENABLED (26)
|
|
|
|
static struct {
|
|
volatile sig_atomic_t quit;
|
|
volatile sig_atomic_t info;
|
|
long timeout;
|
|
int mptcp;
|
|
int state_fd;
|
|
} gt;
|
|
|
|
struct fdbuf {
|
|
int fd;
|
|
buffer_t read;
|
|
buffer_t write;
|
|
};
|
|
|
|
struct crypto_ctx {
|
|
struct {
|
|
uint8_t key[512] _align_(16);
|
|
uint8_t nonce[16];
|
|
} write, read;
|
|
uint8_t skey[crypto_generichash_KEYBYTES];
|
|
int chacha;
|
|
};
|
|
|
|
_pure_
|
|
static int64_t dt_ms (struct timeval *ta, struct timeval *tb)
|
|
{
|
|
const int64_t s = ta->tv_sec-tb->tv_sec;
|
|
const int64_t n = ta->tv_usec-tb->tv_usec;
|
|
return s*1000LL+n/1000LL;
|
|
}
|
|
|
|
static void fd_set_nonblock (int fd)
|
|
{
|
|
int ret;
|
|
|
|
do {
|
|
ret = fcntl(fd, F_GETFL, 0);
|
|
} while (ret==-1 && errno==EINTR);
|
|
|
|
int flags = (ret==-1)?0:ret;
|
|
|
|
do {
|
|
ret = fcntl(fd, F_SETFL, flags|O_NONBLOCK);
|
|
} while (ret==-1 && errno==EINTR);
|
|
|
|
if (ret==-1)
|
|
perror("fcntl O_NONBLOCK");
|
|
}
|
|
|
|
enum sk_opt {
|
|
sk_nodelay,
|
|
sk_reuseaddr,
|
|
sk_keepalive,
|
|
sk_keepcnt,
|
|
sk_keepidle,
|
|
sk_keepintvl,
|
|
sk_congestion,
|
|
sk_defer_accept,
|
|
sk_acceptfilter,
|
|
sk_quickack,
|
|
sk_user_timeout,
|
|
sk_mptcp,
|
|
};
|
|
|
|
static void sk_set (int fd, enum sk_opt opt, const void *val, socklen_t len)
|
|
{
|
|
if (!val || len<=0)
|
|
return;
|
|
|
|
struct {
|
|
const char *name;
|
|
const int present;
|
|
const int level;
|
|
const int option;
|
|
} opts[] = {
|
|
[sk_nodelay] = { "TCP_NODELAY", 1, IPPROTO_TCP, TCP_NODELAY, },
|
|
[sk_reuseaddr] = { "SO_REUSEADDR", 1, SOL_SOCKET, SO_REUSEADDR, },
|
|
[sk_keepalive] = { "SO_KEEPALIVE", 1, SOL_SOCKET, SO_KEEPALIVE, },
|
|
[sk_keepcnt] = { "TCP_KEEPCNT",
|
|
#ifdef TCP_KEEPCNT
|
|
1, IPPROTO_TCP, TCP_KEEPCNT,
|
|
#endif
|
|
},
|
|
[sk_keepidle] = { "TCP_KEEPIDLE",
|
|
#ifdef TCP_KEEPIDLE
|
|
1, IPPROTO_TCP, TCP_KEEPIDLE,
|
|
#endif
|
|
},
|
|
[sk_keepintvl] = { "TCP_KEEPINTVL",
|
|
#ifdef TCP_KEEPINTVL
|
|
1, IPPROTO_TCP, TCP_KEEPINTVL,
|
|
#endif
|
|
},
|
|
[sk_congestion] = { "TCP_CONGESTION",
|
|
#ifdef TCP_CONGESTION
|
|
1, IPPROTO_TCP, TCP_CONGESTION,
|
|
#endif
|
|
},
|
|
[sk_defer_accept] = { "TCP_DEFER_ACCEPT",
|
|
#ifdef TCP_DEFER_ACCEPT
|
|
1, IPPROTO_TCP, TCP_DEFER_ACCEPT,
|
|
#endif
|
|
},
|
|
[sk_quickack] = { "TCP_QUICKACK",
|
|
#ifdef TCP_QUICKACK
|
|
1, IPPROTO_TCP, TCP_QUICKACK,
|
|
#endif
|
|
},
|
|
[sk_acceptfilter] = { "SO_ACCEPTFILTER",
|
|
#ifdef SO_ACCEPTFILTER
|
|
1, SOL_SOCKET, SO_ACCEPTFILTER,
|
|
#endif
|
|
},
|
|
[sk_user_timeout] = { "TCP_USER_TIMEOUT",
|
|
#ifdef TCP_USER_TIMEOUT
|
|
1, IPPROTO_TCP, TCP_USER_TIMEOUT,
|
|
#endif
|
|
},
|
|
[sk_mptcp] = { "MPTCP_ENABLED",
|
|
#ifdef MPTCP_ENABLED
|
|
1, IPPROTO_TCP, MPTCP_ENABLED,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
if (!opts[opt].present) {
|
|
gt_na(opts[opt].name);
|
|
return;
|
|
}
|
|
|
|
if (setsockopt(fd, opts[opt].level, opts[opt].option, val, len)==-1)
|
|
gt_log("couldn't set socket option `%s'\n", opts[opt].name);
|
|
}
|
|
|
|
static void sk_set_int (int fd, enum sk_opt opt, int val)
|
|
{
|
|
return sk_set(fd, opt, &val, sizeof(val));
|
|
}
|
|
|
|
static int sk_listen (int fd, struct addrinfo *ai)
|
|
{
|
|
sk_set_int(fd, sk_reuseaddr, 1);
|
|
|
|
if (gt.mptcp)
|
|
sk_set_int(fd, sk_mptcp, 1);
|
|
|
|
if (bind(fd, ai->ai_addr, ai->ai_addrlen)==-1) {
|
|
perror("bind");
|
|
return -1;
|
|
}
|
|
|
|
if (listen(fd, 8)==-1) {
|
|
perror("listen");
|
|
return -1;
|
|
}
|
|
|
|
#ifdef __linux__
|
|
sk_set_int(fd, sk_defer_accept, gt.timeout/1000);
|
|
#else
|
|
char data[256] = "dataready";
|
|
sk_set(fd, sk_acceptfilter, &data, sizeof(data));
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sk_connect (int fd, struct addrinfo *ai)
|
|
{
|
|
fd_set_nonblock(fd);
|
|
|
|
if (gt.mptcp)
|
|
sk_set_int(fd, sk_mptcp, 1);
|
|
|
|
int ret = connect(fd, ai->ai_addr, ai->ai_addrlen);
|
|
|
|
if (ret==-1) {
|
|
if (errno==EINTR)
|
|
return 0;
|
|
|
|
if (errno==EINPROGRESS) {
|
|
struct pollfd pollfd = {
|
|
.fd = fd,
|
|
.events = POLLOUT,
|
|
};
|
|
|
|
if (!poll(&pollfd, 1, gt.timeout))
|
|
return -1;
|
|
|
|
int opt = 0;
|
|
socklen_t optlen = sizeof(opt);
|
|
|
|
getsockopt(fd, SOL_SOCKET, SO_ERROR, &opt, &optlen);
|
|
|
|
if (!opt)
|
|
return 0;
|
|
|
|
errno = opt;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sk_create (struct addrinfo *res, int(*func)(int, struct addrinfo *))
|
|
{
|
|
for (struct addrinfo *ai=res; ai; ai=ai->ai_next) {
|
|
int fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
|
|
|
|
if (fd==-1)
|
|
continue;
|
|
|
|
if (func(fd, ai)!=-1)
|
|
return fd;
|
|
|
|
close(fd);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int sk_accept (int fd)
|
|
{
|
|
struct sockaddr_storage addr;
|
|
socklen_t addr_size = sizeof(addr);
|
|
|
|
int ret = accept(fd, (struct sockaddr *)&addr, &addr_size);
|
|
|
|
if (ret==-1) {
|
|
if (errno!=EINTR)
|
|
perror("accept");
|
|
return -1;
|
|
}
|
|
|
|
fd_set_nonblock(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *sk_get_name (int fd)
|
|
{
|
|
struct sockaddr_storage addr;
|
|
socklen_t addr_size = sizeof(addr);
|
|
|
|
if (getpeername(fd, (struct sockaddr *)&addr, &addr_size)==-1) {
|
|
perror("getpeername");
|
|
return NULL;
|
|
}
|
|
|
|
char host[64] = {0};
|
|
char port[32] = {0};
|
|
|
|
int ret = getnameinfo((struct sockaddr *)&addr, addr_size,
|
|
host, sizeof(host),
|
|
port, sizeof(port),
|
|
NI_NUMERICHOST|NI_NUMERICSERV);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
break;
|
|
case EAI_MEMORY:
|
|
errno = ENOMEM;
|
|
case EAI_SYSTEM:
|
|
perror("getnameinfo");
|
|
return NULL;
|
|
}
|
|
|
|
const char *strs[] = {
|
|
host, ".", port
|
|
};
|
|
|
|
return str_cat(strs, COUNT(strs));
|
|
}
|
|
|
|
static struct addrinfo *ai_create (const char *host, const char *port, int listener)
|
|
{
|
|
if (str_empty(port)) {
|
|
gt_log("port is not valid\n");
|
|
return NULL;
|
|
}
|
|
|
|
struct addrinfo hints = {
|
|
.ai_family = AF_UNSPEC,
|
|
.ai_socktype = SOCK_STREAM,
|
|
.ai_protocol = IPPROTO_TCP,
|
|
};
|
|
|
|
if (listener)
|
|
hints.ai_flags = AI_PASSIVE;
|
|
|
|
struct addrinfo *ai = NULL;
|
|
|
|
int ret = getaddrinfo(host, port, &hints, &ai);
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return ai;
|
|
case EAI_MEMORY:
|
|
errno = ENOMEM;
|
|
case EAI_SYSTEM:
|
|
perror("getaddrinfo");
|
|
break;
|
|
case EAI_FAIL:
|
|
case EAI_AGAIN:
|
|
gt_log("the name server returned a failure\n");
|
|
break;
|
|
default:
|
|
gt_log("%s.%s is not valid\n", host?:"", port);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void gt_sa_handler (int sig)
|
|
{
|
|
switch (sig) {
|
|
case SIGINT:
|
|
case SIGQUIT:
|
|
case SIGTERM:
|
|
gt.quit = 1;
|
|
break;
|
|
case SIGUSR1:
|
|
gt.info = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void gt_set_signal (void)
|
|
{
|
|
struct sigaction sa = {
|
|
.sa_flags = 0,
|
|
};
|
|
|
|
sigemptyset(&sa.sa_mask);
|
|
|
|
sa.sa_handler = gt_sa_handler;
|
|
sigaction(SIGINT, &sa, NULL);
|
|
sigaction(SIGQUIT, &sa, NULL);
|
|
sigaction(SIGTERM, &sa, NULL);
|
|
sigaction(SIGUSR1, &sa, NULL);
|
|
|
|
sa.sa_handler = SIG_IGN;
|
|
sigaction(SIGHUP, &sa, NULL);
|
|
sigaction(SIGPIPE, &sa, NULL);
|
|
}
|
|
|
|
static ssize_t fd_read (int fd, void *data, size_t size)
|
|
{
|
|
if ((fd==-1) || !size)
|
|
return -1;
|
|
|
|
ssize_t ret = read(fd, data, size);
|
|
|
|
if (ret==-1) {
|
|
if (errno==EAGAIN || errno==EINTR)
|
|
return -1;
|
|
|
|
if (errno)
|
|
perror("read");
|
|
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t fd_write (int fd, const void *data, size_t size)
|
|
{
|
|
if ((fd==-1) || !size)
|
|
return -1;
|
|
|
|
ssize_t ret = write(fd, data, size);
|
|
|
|
if (ret==-1) {
|
|
if (errno==EAGAIN || errno==EINTR)
|
|
return -1;
|
|
|
|
if (errno==EPIPE || errno==ECONNRESET)
|
|
return 0;
|
|
|
|
if (errno)
|
|
perror("write");
|
|
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t fd_read_all (int fd, void *data, size_t size)
|
|
{
|
|
size_t done = 0;
|
|
|
|
while (done<size) {
|
|
ssize_t ret = fd_read(fd, (uint8_t *)data+done, size-done);
|
|
|
|
if (!ret)
|
|
break;
|
|
|
|
if (ret<0) {
|
|
struct pollfd pollfd = {
|
|
.fd = fd,
|
|
.events = POLLIN,
|
|
};
|
|
|
|
if (!poll(&pollfd, 1, gt.timeout))
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
done += ret;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
static size_t fd_write_all (int fd, const void *data, size_t size)
|
|
{
|
|
size_t done = 0;
|
|
|
|
while (done<size) {
|
|
ssize_t ret = fd_write(fd, (const uint8_t *)data+done, size-done);
|
|
|
|
if (!ret)
|
|
break;
|
|
|
|
if (ret<0) {
|
|
struct pollfd pollfd = {
|
|
.fd = fd,
|
|
.events = POLLOUT,
|
|
};
|
|
|
|
if (!poll(&pollfd, 1, gt.timeout))
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
done += ret;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
static int gt_encrypt (struct crypto_ctx *ctx, buffer_t *dst, buffer_t *src)
|
|
{
|
|
const size_t rs = buffer_read_size(src);
|
|
const size_t ws = buffer_write_size(dst);
|
|
|
|
if (!rs || !ws)
|
|
return 0;
|
|
|
|
const size_t size = rs+GT_ABYTES;
|
|
|
|
if (size+2>ws)
|
|
return 0;
|
|
|
|
dst->write[0] = 0xFF&(size>>8);
|
|
dst->write[1] = 0xFF&(size);
|
|
|
|
if (ctx->chacha) {
|
|
crypto_aead_chacha20poly1305_encrypt(
|
|
dst->write+2, NULL,
|
|
src->read, rs,
|
|
dst->write, 2,
|
|
NULL, ctx->write.nonce,
|
|
ctx->write.key);
|
|
|
|
sodium_increment(ctx->write.nonce, crypto_aead_chacha20poly1305_NPUBBYTES);
|
|
} else {
|
|
crypto_aead_aes256gcm_encrypt_afternm(
|
|
dst->write+2, NULL,
|
|
src->read, rs,
|
|
dst->write, 2,
|
|
NULL, ctx->write.nonce,
|
|
(const crypto_aead_aes256gcm_state *)ctx->write.key);
|
|
|
|
sodium_increment(ctx->write.nonce, crypto_aead_aes256gcm_NPUBBYTES);
|
|
}
|
|
|
|
src->read += rs;
|
|
dst->write += size+2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gt_decrypt (struct crypto_ctx *ctx, buffer_t *dst, buffer_t *src)
|
|
{
|
|
const size_t rs = buffer_read_size(src);
|
|
const size_t ws = buffer_write_size(dst);
|
|
|
|
if (!rs || !ws)
|
|
return 0;
|
|
|
|
if (rs<=2+GT_ABYTES)
|
|
return 0;
|
|
|
|
const size_t size = (src->read[0]<<8)|src->read[1];
|
|
|
|
if (size-GT_ABYTES>ws)
|
|
return 0;
|
|
|
|
if (size+2>rs)
|
|
return 0;
|
|
|
|
if (ctx->chacha) {
|
|
if (crypto_aead_chacha20poly1305_decrypt(
|
|
dst->write, NULL,
|
|
NULL,
|
|
src->read+2, size,
|
|
src->read, 2,
|
|
ctx->read.nonce,
|
|
ctx->read.key))
|
|
return -1;
|
|
|
|
sodium_increment(ctx->read.nonce, crypto_aead_chacha20poly1305_NPUBBYTES);
|
|
} else {
|
|
if (crypto_aead_aes256gcm_decrypt_afternm(
|
|
dst->write, NULL,
|
|
NULL,
|
|
src->read+2, size,
|
|
src->read, 2,
|
|
ctx->read.nonce,
|
|
(const crypto_aead_aes256gcm_state *)ctx->read.key))
|
|
return -1;
|
|
|
|
sodium_increment(ctx->read.nonce, crypto_aead_aes256gcm_NPUBBYTES);
|
|
}
|
|
|
|
src->read += size+2;
|
|
dst->write += size-GT_ABYTES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
_pure_
|
|
static inline uint32_t sum16 (uint32_t sum, const uint8_t *data, const size_t size)
|
|
{
|
|
const size_t lim = size&~1u;
|
|
|
|
for (size_t i=0; i<lim; i+=2)
|
|
sum += (data[i]<<8)|data[i+1];
|
|
|
|
if (size&1)
|
|
sum += data[size-1]<<8;
|
|
|
|
return sum;
|
|
}
|
|
|
|
_const_
|
|
static inline uint16_t sum16_final (uint32_t sum)
|
|
{
|
|
sum = (sum>>16)+(sum&0xFFFF);
|
|
return ~(sum+(sum>>16));
|
|
}
|
|
|
|
struct seq_elem {
|
|
uint32_t seq;
|
|
uint32_t size;
|
|
};
|
|
|
|
struct seq_array {
|
|
struct seq_elem *elem;
|
|
uint32_t count;
|
|
uint32_t base;
|
|
};
|
|
|
|
struct tcp_entry {
|
|
uint8_t key[37];
|
|
struct {
|
|
struct seq_array sa;
|
|
size_t retrans;
|
|
} data[2];
|
|
};
|
|
|
|
void tcp_entry_free (struct tcp_entry *te)
|
|
{
|
|
free(te->data[0].sa.elem);
|
|
free(te->data[1].sa.elem);
|
|
free(te);
|
|
}
|
|
|
|
void sa_insert_elem (struct seq_array *sa, uint32_t i, uint32_t seq, uint32_t size)
|
|
{
|
|
if (sa->count<i)
|
|
return;
|
|
|
|
if (!(sa->count&7)) {
|
|
struct seq_elem *tmp = realloc(sa->elem, (sa->count+8)*sizeof(struct seq_elem));
|
|
|
|
if (!tmp) {
|
|
gt_log("couldn't realloc!\n");
|
|
return;
|
|
}
|
|
|
|
sa->elem = tmp;
|
|
}
|
|
|
|
memmove(&sa->elem[i+1], &sa->elem[i], (sa->count-i)*sizeof(struct seq_elem));
|
|
|
|
sa->elem[i].seq = seq;
|
|
sa->elem[i].size = size;
|
|
sa->count++;
|
|
}
|
|
|
|
void sa_remove_elem (struct seq_array *sa, uint32_t i)
|
|
{
|
|
if (sa->count<i+1)
|
|
return;
|
|
|
|
sa->count--;
|
|
|
|
memmove(&sa->elem[i], &sa->elem[i+1], (sa->count-i)*sizeof(struct seq_elem));
|
|
}
|
|
|
|
int sa_have (struct seq_array *sa, uint32_t seq, uint32_t size)
|
|
{
|
|
uint32_t i;
|
|
uint32_t seqa = seq-sa->base;
|
|
|
|
for (i=0; i<sa->count; i++) {
|
|
uint32_t seqb = sa->elem[i].seq-sa->base;
|
|
|
|
if (seqb>=seqa) {
|
|
uint32_t d = seqb-seqa;
|
|
|
|
if (d>size)
|
|
return 0;
|
|
} else {
|
|
uint32_t d = seqa-seqb;
|
|
|
|
if (d>=sa->elem[i].size)
|
|
continue;
|
|
|
|
if (d+size>sa->elem[i].size) {
|
|
gt_print("sa_have:part\n");
|
|
return 0; // XXX 0
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void sa_rebase (struct seq_array *sa, uint32_t seq)
|
|
{
|
|
if (!sa->count)
|
|
return;
|
|
|
|
if (seq==sa->base)
|
|
return;
|
|
|
|
uint32_t size = seq-sa->elem[0].seq;
|
|
|
|
if (size==sa->elem[0].size) {
|
|
sa_remove_elem(sa, 0);
|
|
} else {
|
|
if (size>sa->elem[0].size)
|
|
return;
|
|
sa->elem[0].seq = seq;
|
|
sa->elem[0].size -= size;
|
|
}
|
|
|
|
sa->base = seq;
|
|
}
|
|
|
|
void sa_insert (struct seq_array *sa, uint32_t seq, uint32_t size)
|
|
{
|
|
uint32_t i;
|
|
uint32_t seqa = seq-sa->base;
|
|
|
|
for (i=0; i<sa->count; i++) {
|
|
uint32_t seqb = sa->elem[i].seq-sa->base;
|
|
|
|
if (seqb>=seqa) {
|
|
uint32_t d = seqb-seqa;
|
|
|
|
if (d>size)
|
|
break;
|
|
|
|
sa->elem[i].seq = seq;
|
|
|
|
uint32_t new_size = sa->elem[i].size+d;
|
|
|
|
if (new_size>size) {
|
|
sa->elem[i].size = new_size;
|
|
} else {
|
|
sa->elem[i].size = size;
|
|
}
|
|
} else {
|
|
uint32_t d = seqa-seqb;
|
|
|
|
if (d>sa->elem[i].size)
|
|
continue;
|
|
|
|
uint32_t new_size = size+d;
|
|
|
|
if (new_size>sa->elem[i].size)
|
|
sa->elem[i].size = new_size;
|
|
}
|
|
|
|
if (i+1<sa->count) {
|
|
if (seqb+sa->elem[i].size==sa->elem[i+1].seq-sa->base) {
|
|
sa->elem[i].size += sa->elem[i+1].size;
|
|
sa_remove_elem(sa, i+1);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
sa_insert_elem(sa, i, seq, size);
|
|
}
|
|
|
|
static int tcp_entry_set_key (struct tcp_entry *te, struct ip_common *ic, uint8_t *data)
|
|
{
|
|
uint8_t *key = &te->key[1];
|
|
size_t size = 0;
|
|
|
|
switch (ic->version) {
|
|
case 4:
|
|
size = 8;
|
|
memcpy(key, &data[12], 8);
|
|
break;
|
|
case 6:
|
|
size = 32;
|
|
memcpy(key, &data[9], 32);
|
|
break;
|
|
}
|
|
|
|
memcpy(&key[size], &data[ic->hdr_size], 4);
|
|
te->key[0] = size+4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tcp_entry_set_key_rev (struct tcp_entry *te, struct ip_common *ic, uint8_t *data)
|
|
{
|
|
uint8_t *key = &te->key[1];
|
|
size_t size = 0;
|
|
|
|
switch (ic->version) {
|
|
case 4:
|
|
size = 8;
|
|
memcpy(key, &data[12+4], 4);
|
|
memcpy(key+4, &data[12], 4);
|
|
break;
|
|
case 6:
|
|
size = 32;
|
|
memcpy(key, &data[9+16], 16);
|
|
memcpy(key+16, &data[9], 16);
|
|
break;
|
|
}
|
|
|
|
memcpy(&key[size], &data[ic->hdr_size+2], 2);
|
|
memcpy(&key[size+2], &data[ic->hdr_size], 2);
|
|
te->key[0] = size+4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gt_print_entry (struct tcp_entry *te)
|
|
{
|
|
uint8_t *key = &te->key[1];
|
|
size_t size = te->key[0];
|
|
|
|
char ip0[INET6_ADDRSTRLEN] = {0};
|
|
char ip1[INET6_ADDRSTRLEN] = {0};
|
|
|
|
uint16_t port0 = 0;
|
|
uint16_t port1 = 0;
|
|
|
|
switch (size) {
|
|
case 8+4:
|
|
inet_ntop(AF_INET, key, ip0, sizeof(ip0));
|
|
inet_ntop(AF_INET, key+4, ip1, sizeof(ip1));
|
|
port0 = (key[8]<<8)|key[9];
|
|
port1 = (key[10]<<8)|key[11];
|
|
break;
|
|
case 32+4:
|
|
inet_ntop(AF_INET6, key, ip0, sizeof(ip0));
|
|
inet_ntop(AF_INET6, key+16, ip1, sizeof(ip1));
|
|
port0 = (key[32]<<8)|key[33];
|
|
port1 = (key[34]<<8)|key[35];
|
|
break;
|
|
}
|
|
|
|
gt_print("connection:%s.%hu-%s.%hu\t"
|
|
"retrans:%zu, %zu\n",
|
|
ip0, port0, ip1, port1,
|
|
te->data[0].retrans,
|
|
te->data[1].retrans);
|
|
}
|
|
|
|
static void gt_print_hdr (struct ip_common *ic, uint8_t *data)
|
|
{
|
|
if (!ic->hdr_size)
|
|
return;
|
|
|
|
uint32_t sum = ic->proto+ic->size-ic->hdr_size;
|
|
|
|
char ip_src[INET6_ADDRSTRLEN];
|
|
char ip_dst[INET6_ADDRSTRLEN];
|
|
|
|
switch (ic->version) {
|
|
case 4:
|
|
inet_ntop(AF_INET, &data[12], ip_src, sizeof(ip_src));
|
|
inet_ntop(AF_INET, &data[16], ip_dst, sizeof(ip_dst));
|
|
sum = sum16(sum, &data[12], 2*4);
|
|
break;
|
|
case 6:
|
|
inet_ntop(AF_INET6, &data[9], ip_src, sizeof(ip_src));
|
|
inet_ntop(AF_INET6, &data[25], ip_dst, sizeof(ip_dst));
|
|
sum = sum16(sum, &data[9], 2*16); // XXX
|
|
break;
|
|
}
|
|
|
|
uint8_t *const packet = &data[ic->hdr_size];
|
|
|
|
if (ic->proto==IPPROTO_TCP) {
|
|
struct tcphdr tcp;
|
|
|
|
memcpy(&tcp, packet, sizeof(tcp));
|
|
|
|
uint16_t tcp_sum = ntohs(tcp.th_sum);
|
|
tcp.th_sum = 0;
|
|
|
|
sum = sum16(sum, (uint8_t *)&tcp, sizeof(tcp));
|
|
sum = sum16(sum, &packet[sizeof(tcp)], ic->size-ic->hdr_size-sizeof(tcp));
|
|
uint16_t computed_sum = sum16_final(sum);
|
|
|
|
tcp.th_sport = ntohs(tcp.th_sport);
|
|
tcp.th_dport = ntohs(tcp.th_dport);
|
|
tcp.th_seq = ntohl(tcp.th_seq);
|
|
tcp.th_ack = ntohl(tcp.th_ack);
|
|
tcp.th_win = ntohs(tcp.th_win);
|
|
|
|
gt_print("proto:%hhu\tsrc:%s.%u\tdst:%s.%u\tseq:%u\tack:%u\twin:%u\tsize:%u\tflags:%c%c%c%c%c%c\tsum:%i\n",
|
|
ic->proto, ip_src, tcp.th_sport, ip_dst, tcp.th_dport,
|
|
tcp.th_seq, tcp.th_ack, tcp.th_win, ic->size-ic->hdr_size-tcp.th_off*4,
|
|
(tcp.th_flags&TH_FIN) ?'F':'.',
|
|
(tcp.th_flags&TH_SYN) ?'S':'.',
|
|
(tcp.th_flags&TH_RST) ?'R':'.',
|
|
(tcp.th_flags&TH_PUSH)?'P':'.',
|
|
(tcp.th_flags&TH_ACK) ?'A':'.',
|
|
(tcp.th_flags&TH_URG) ?'U':'.',
|
|
(computed_sum==tcp_sum));
|
|
|
|
} else if (ic->proto==IPPROTO_UDP) {
|
|
struct udphdr udp;
|
|
|
|
memcpy(&udp, packet, sizeof(udp));
|
|
|
|
udp.uh_sport = ntohs(udp.uh_sport);
|
|
udp.uh_dport = ntohs(udp.uh_dport);
|
|
udp.uh_ulen = ntohs(udp.uh_ulen);
|
|
|
|
gt_print("proto:%hhu\tsrc:%s.%u\tdst:%s.%u\tsize:%u\n",
|
|
ic->proto, ip_src, udp.uh_sport, ip_dst, udp.uh_dport, udp.uh_ulen-8);
|
|
} else {
|
|
gt_print("proto:%hhu\tsrc:%s\tdst:%s\tsize:%hu\n",
|
|
ic->proto, ip_src, ip_dst, ic->size);
|
|
}
|
|
}
|
|
|
|
static int gt_track (uint8_t **db, struct ip_common *ic, uint8_t *data, int rev)
|
|
{
|
|
if (ic->proto!=IPPROTO_TCP)
|
|
return 0;
|
|
|
|
if (!ic->hdr_size)
|
|
return 1;
|
|
|
|
struct tcp_entry entry;
|
|
|
|
if (rev) {
|
|
tcp_entry_set_key_rev(&entry, ic, data);
|
|
} else {
|
|
tcp_entry_set_key(&entry, ic, data);
|
|
}
|
|
|
|
struct tcphdr tcp;
|
|
memcpy(&tcp, &data[ic->hdr_size], sizeof(tcp));
|
|
tcp.th_seq = ntohl(tcp.th_seq);
|
|
tcp.th_ack = ntohl(tcp.th_ack);
|
|
|
|
struct tcp_entry *r_entry = (void *)db_search(db, entry.key);
|
|
|
|
if (tcp.th_flags&(TH_FIN|TH_RST)) {
|
|
if (r_entry) {
|
|
gt_print_entry(r_entry);
|
|
db_remove(db, entry.key);
|
|
tcp_entry_free(r_entry);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (tcp.th_flags&TH_ACK) {
|
|
if (!r_entry) {
|
|
r_entry = calloc(1, sizeof(entry));
|
|
|
|
if (!r_entry)
|
|
return 0;
|
|
|
|
memcpy(r_entry->key, entry.key, sizeof(entry.key));
|
|
|
|
if (!db_insert(db, r_entry->key)) {
|
|
free(r_entry);
|
|
return 0;
|
|
}
|
|
|
|
gt_print_entry(r_entry);
|
|
|
|
r_entry->data[1-rev].sa.base = tcp.th_ack;
|
|
r_entry->data[rev].sa.base = tcp.th_seq;
|
|
} else {
|
|
sa_rebase(&r_entry->data[1-rev].sa, tcp.th_ack);
|
|
}
|
|
}
|
|
|
|
if (!r_entry)
|
|
return 0;
|
|
|
|
uint32_t size = ic->size-ic->hdr_size-tcp.th_off*4;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
if (sa_have(&r_entry->data[rev].sa, tcp.th_seq, size)) {
|
|
r_entry->data[rev].retrans++;
|
|
} else {
|
|
sa_insert(&r_entry->data[rev].sa, tcp.th_seq, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long long gt_now (void)
|
|
{
|
|
#if defined __APPLE__
|
|
static mach_timebase_info_data_t mtid;
|
|
if (!mtid.denom) mach_timebase_info(&mtid);
|
|
return (mach_absolute_time()*mtid.numer/mtid.denom)/1000ULL;
|
|
#elif defined CLOCK_MONOTONIC
|
|
struct timespec tv;
|
|
clock_gettime(CLOCK_MONOTONIC, &tv);
|
|
return tv.tv_sec*1000000ULL+tv.tv_nsec/1000ULL;
|
|
#else
|
|
struct timeval tv;
|
|
gettimeofday(&tv, NULL);
|
|
return tv.tv_sec*1000000ULL+tv.tv_usec;
|
|
#endif
|
|
}
|
|
|
|
static void gt_bench (int chacha)
|
|
{
|
|
unsigned char npub[crypto_aead_aes256gcm_NPUBBYTES];
|
|
memset(npub, 0, sizeof(npub));
|
|
|
|
unsigned char key[crypto_aead_aes256gcm_KEYBYTES];
|
|
memset(key, 1, sizeof(key));
|
|
|
|
crypto_aead_aes256gcm_state ctx;
|
|
|
|
if (!chacha)
|
|
crypto_aead_aes256gcm_beforenm(&ctx, key);
|
|
|
|
gt_print("bench: %s\n", chacha?"chacha20poly1305":"aes256gcm");
|
|
|
|
_align_(16) unsigned char buf[32*1024+crypto_aead_aes256gcm_ABYTES];
|
|
|
|
size_t bs = 8;
|
|
|
|
while (!gt.quit && bs<=sizeof(buf)) {
|
|
size_t total_size = 0;
|
|
unsigned long long total_dt = 0.0;
|
|
double mbps = 0.0;
|
|
|
|
while (!gt.quit) {
|
|
unsigned long long now = gt_now();
|
|
|
|
size_t size = 0;
|
|
|
|
while (!gt.quit && size<16*1024*1024) {
|
|
if (chacha) {
|
|
crypto_aead_chacha20poly1305_encrypt(buf, NULL,
|
|
buf, bs, NULL, 0, NULL, npub, key);
|
|
} else {
|
|
crypto_aead_aes256gcm_encrypt_afternm(buf, NULL,
|
|
buf, bs, NULL, 0, NULL, npub,
|
|
(const crypto_aead_aes256gcm_state *)&ctx);
|
|
}
|
|
size += bs;
|
|
}
|
|
|
|
total_dt += gt_now()-now;
|
|
total_size += size;
|
|
|
|
double last_mbps = mbps;
|
|
mbps = total_size*8.0/total_dt;
|
|
|
|
double diff = mbps-last_mbps;
|
|
|
|
if (-0.1<diff && diff<0.1)
|
|
break;
|
|
}
|
|
|
|
gt_print("%6zu bytes %9.2f Mbps\n", bs, mbps);
|
|
bs *= 2;
|
|
}
|
|
}
|
|
|
|
static int gt_setup_secretkey (struct crypto_ctx *ctx, char *keyfile)
|
|
{
|
|
const size_t size = sizeof(ctx->skey);
|
|
|
|
if (str_empty(keyfile)) {
|
|
char buf[2*size+1];
|
|
|
|
randombytes_buf(ctx->skey, size);
|
|
gt_tohex(buf, sizeof(buf), ctx->skey, size);
|
|
state_send(gt.state_fd, "SECRETKEY", buf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int fd;
|
|
|
|
do {
|
|
fd = open(keyfile, O_RDONLY|O_CLOEXEC);
|
|
} while (fd==-1 && errno==EINTR);
|
|
|
|
if (fd==-1) {
|
|
perror("open keyfile");
|
|
return -1;
|
|
}
|
|
|
|
char key[2*size];
|
|
size_t r = fd_read_all(fd, key, sizeof(key));
|
|
|
|
close(fd);
|
|
|
|
if (r!=sizeof(key)) {
|
|
gt_log("unable to read secret key\n");
|
|
return -1;
|
|
}
|
|
|
|
if (gt_fromhex(ctx->skey, size, key, sizeof(key))) {
|
|
gt_log("secret key is not valid\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gt_setup_crypto (struct crypto_ctx *ctx, int fd, int listener)
|
|
{
|
|
const uint8_t proto[] = {'G', 'T', VERSION_MAJOR, (uint8_t)ctx->chacha };
|
|
|
|
const size_t size = 96;
|
|
const size_t hash_size = 32;
|
|
|
|
uint8_t secret[crypto_scalarmult_SCALARBYTES];
|
|
uint8_t shared[crypto_scalarmult_BYTES];
|
|
|
|
uint8_t key_r[GT_KEYBYTES];
|
|
uint8_t key_w[GT_KEYBYTES];
|
|
|
|
uint8_t data_r[size], data_w[size];
|
|
uint8_t auth_r[hash_size], auth_w[hash_size];
|
|
uint8_t hash[hash_size];
|
|
|
|
crypto_generichash_state state;
|
|
|
|
memset(data_w, 0, size);
|
|
|
|
randombytes_buf(secret, sizeof(secret));
|
|
crypto_scalarmult_base(data_w, secret);
|
|
|
|
memcpy(&data_w[size-hash_size-sizeof(proto)], proto, sizeof(proto));
|
|
|
|
crypto_generichash(&data_w[size-hash_size], hash_size,
|
|
data_w, size-hash_size, ctx->skey, sizeof(ctx->skey));
|
|
|
|
if (!listener && fd_write_all(fd, data_w, size)!=size)
|
|
return -1;
|
|
|
|
if (fd_read_all(fd, data_r, size)!=size)
|
|
return -1;
|
|
|
|
if (memcmp(&data_r[size-hash_size-sizeof(proto)], proto, 3)) {
|
|
gt_log("bad packet [%02X%02X%02X] !\n",
|
|
&data_r[size-hash_size-sizeof(proto)+0],
|
|
&data_r[size-hash_size-sizeof(proto)+1],
|
|
&data_r[size-hash_size-sizeof(proto)+2]);
|
|
return -2;
|
|
}
|
|
|
|
if (data_r[size-hash_size-sizeof(proto)+3] && !ctx->chacha) {
|
|
gt_log("peer wants chacha20\n");
|
|
ctx->chacha = 1;
|
|
}
|
|
|
|
crypto_generichash(hash, hash_size,
|
|
data_r, size-hash_size, ctx->skey, sizeof(ctx->skey));
|
|
|
|
if (sodium_memcmp(&data_r[size-hash_size], hash, hash_size)) {
|
|
gt_log("peer sends a bad hash!\n");
|
|
return -2;
|
|
}
|
|
|
|
if (listener && fd_write_all(fd, data_w, size)!=size)
|
|
return -1;
|
|
|
|
crypto_generichash(auth_w, hash_size,
|
|
data_r, size, ctx->skey, sizeof(ctx->skey));
|
|
|
|
if (fd_write_all(fd, auth_w, hash_size)!=hash_size)
|
|
return -1;
|
|
|
|
if (fd_read_all(fd, auth_r, hash_size)!=hash_size)
|
|
return -1;
|
|
|
|
crypto_generichash(hash, hash_size,
|
|
data_w, size, ctx->skey, sizeof(ctx->skey));
|
|
|
|
if (sodium_memcmp(auth_r, hash, hash_size)) {
|
|
gt_log("peer sends a bad hash (challenge-response)!\n");
|
|
return -2;
|
|
}
|
|
|
|
if (crypto_scalarmult(shared, secret, data_r)) {
|
|
gt_log("I'm just gonna hurt you really, really, BAD\n");
|
|
return -2;
|
|
}
|
|
|
|
crypto_generichash_init(&state, ctx->skey, sizeof(ctx->skey), sizeof(key_r));
|
|
crypto_generichash_update(&state, shared, sizeof(shared));
|
|
crypto_generichash_update(&state, data_r, size);
|
|
crypto_generichash_update(&state, data_w, size);
|
|
crypto_generichash_final(&state, key_r, sizeof(key_r));
|
|
|
|
crypto_generichash_init(&state, ctx->skey, sizeof(ctx->skey), sizeof(key_w));
|
|
crypto_generichash_update(&state, shared, sizeof(shared));
|
|
crypto_generichash_update(&state, data_w, size);
|
|
crypto_generichash_update(&state, data_r, size);
|
|
crypto_generichash_final(&state, key_w, sizeof(key_w));
|
|
|
|
if (ctx->chacha) {
|
|
memcpy(ctx->read.key, key_r, sizeof(key_r));
|
|
memcpy(ctx->write.key, key_w, sizeof(key_w));
|
|
} else {
|
|
crypto_aead_aes256gcm_beforenm(&ctx->read.key, key_r);
|
|
crypto_aead_aes256gcm_beforenm(&ctx->write.key, key_w);
|
|
}
|
|
|
|
sodium_memzero(secret, sizeof(secret));
|
|
sodium_memzero(shared, sizeof(shared));
|
|
sodium_memzero(key_r, sizeof(key_r));
|
|
sodium_memzero(key_w, sizeof(key_w));
|
|
|
|
memset(ctx->read.nonce, 0, sizeof(ctx->read.nonce));
|
|
memset(ctx->write.nonce, 0, sizeof(ctx->write.nonce));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main (int argc, char **argv)
|
|
{
|
|
gt_set_signal();
|
|
|
|
char *host = NULL;
|
|
char *port = "5000";
|
|
char *dev = NULL;
|
|
char *keyfile = NULL;
|
|
char *congestion = NULL;
|
|
char *statefile = NULL;
|
|
|
|
long buffer_size = GT_PKT_MAX;
|
|
|
|
long ka_count = -1;
|
|
long ka_idle = -1;
|
|
long ka_interval = -1;
|
|
|
|
long retry_count = -1;
|
|
long retry_slope = 0;
|
|
long retry_const = 0;
|
|
long retry_limit = 1000000;
|
|
|
|
gt.timeout = 5000;
|
|
|
|
struct option ka_opts[] = {
|
|
{ "count", &ka_count, option_long },
|
|
{ "idle", &ka_idle, option_long },
|
|
{ "interval", &ka_interval, option_long },
|
|
{ NULL },
|
|
};
|
|
|
|
struct option retry_opts[] = {
|
|
{ "count", &retry_count, option_long },
|
|
{ "slope", &retry_slope, option_long },
|
|
{ "const", &retry_const, option_long },
|
|
{ "limit", &retry_limit, option_long },
|
|
{ NULL },
|
|
};
|
|
|
|
struct option opts[] = {
|
|
{ "listener", NULL, option_option },
|
|
{ "host", &host, option_str },
|
|
{ "port", &port, option_str },
|
|
{ "dev", &dev, option_str },
|
|
{ "keyfile", &keyfile, option_str },
|
|
{ "congestion", &congestion, option_str },
|
|
{ "delay", NULL, option_option },
|
|
{ "multiqueue", NULL, option_option },
|
|
{ "keepalive", ka_opts, option_option },
|
|
{ "buffer-size", &buffer_size, option_long },
|
|
{ "noquickack", NULL, option_option },
|
|
{ "retry", &retry_opts, option_option },
|
|
{ "statefile", &statefile, option_str },
|
|
{ "timeout", >.timeout, option_long },
|
|
{ "bench", NULL, option_option },
|
|
{ "chacha20", NULL, option_option },
|
|
{ "mptcp", NULL, option_option },
|
|
{ "debug", NULL, option_option },
|
|
{ "version", NULL, option_option },
|
|
{ NULL },
|
|
};
|
|
|
|
if (option(opts, argc, argv))
|
|
return 1;
|
|
|
|
if (option_is_set(opts, "version")) {
|
|
gt_print(PACKAGE_STRING"\n");
|
|
return 0;
|
|
}
|
|
|
|
const int listener = option_is_set(opts, "listener");
|
|
const int delay = option_is_set(opts, "delay");
|
|
const int keepalive = option_is_set(opts, "keepalive");
|
|
const int noquickack = option_is_set(opts, "noquickack");
|
|
const int debug = option_is_set(opts, "debug");
|
|
|
|
int chacha = option_is_set(opts, "chacha20");
|
|
|
|
gt.mptcp = option_is_set(opts, "mptcp");
|
|
|
|
if (sodium_init()==-1) {
|
|
gt_log("libsodium initialization has failed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (!chacha && !crypto_aead_aes256gcm_is_available()) {
|
|
gt_na("AES-256-GCM");
|
|
chacha = 1;
|
|
}
|
|
|
|
if (option_is_set(opts, "bench")) {
|
|
gt_bench(chacha);
|
|
return 0;
|
|
}
|
|
|
|
if (buffer_size < GT_PKT_MAX) {
|
|
buffer_size = GT_PKT_MAX;
|
|
gt_log("buffer size must be greater than or equal to %li\n", buffer_size);
|
|
}
|
|
|
|
if (!listener) {
|
|
if (!option_is_set(opts, "keyfile")) {
|
|
gt_log("keyfile option must be set\n");
|
|
return 1;
|
|
}
|
|
|
|
if (!option_is_set(opts, "retry"))
|
|
retry_count = 0;
|
|
}
|
|
|
|
if (gt.timeout<=0 || gt.timeout>INT_MAX) {
|
|
gt_log("bad timeout\n");
|
|
return 1;
|
|
}
|
|
|
|
struct addrinfo *ai = ai_create(host, port, listener);
|
|
|
|
if (!ai)
|
|
return 1;
|
|
|
|
gt.state_fd = state_create(statefile);
|
|
|
|
if (statefile && gt.state_fd==-1)
|
|
return 1;
|
|
|
|
struct fdbuf tun = { .fd = -1 };
|
|
struct fdbuf sock = { .fd = -1 };
|
|
|
|
char *tun_name = NULL;
|
|
|
|
tun.fd = tun_create(dev, &tun_name, option_is_set(opts, "multiqueue"));
|
|
|
|
if (tun.fd==-1) {
|
|
gt_log("couldn't create tun device\n");
|
|
return 1;
|
|
}
|
|
|
|
fd_set_nonblock(tun.fd);
|
|
|
|
buffer_setup(&tun.write, NULL, GT_TUNW_SIZE);
|
|
buffer_setup(&tun.read, NULL, GT_TUNR_SIZE);
|
|
|
|
buffer_setup(&sock.write, NULL, buffer_size);
|
|
buffer_setup(&sock.read, NULL, buffer_size);
|
|
|
|
int fd = -1;
|
|
|
|
if (listener) {
|
|
fd = sk_create(ai, sk_listen);
|
|
|
|
if (fd==-1)
|
|
return 1;
|
|
}
|
|
|
|
struct crypto_ctx ctx;
|
|
|
|
if (gt_setup_secretkey(&ctx, keyfile))
|
|
return 1;
|
|
|
|
long retry = 0;
|
|
uint8_t *db = NULL;
|
|
|
|
state_send(gt.state_fd, "INITIALIZED", tun_name);
|
|
|
|
while (!gt.quit) {
|
|
if (retry_count>=0 && retry>=retry_count+1) {
|
|
gt_log("couldn't %s (%d attempt%s)\n", listener?"listen":"connect",
|
|
(int)retry, (retry>1)?"s":"");
|
|
break;
|
|
}
|
|
|
|
if (retry_slope || retry_const) {
|
|
long usec = retry*retry_slope+retry_const;
|
|
|
|
if (usec>retry_limit)
|
|
usec = retry_limit;
|
|
|
|
if (usec>0 && usleep(usec)==-1 && errno==EINVAL)
|
|
sleep(usec/1000000);
|
|
}
|
|
|
|
if (retry<LONG_MAX)
|
|
retry++;
|
|
|
|
sock.fd = listener?sk_accept(fd):sk_create(ai, sk_connect);
|
|
|
|
if (sock.fd==-1)
|
|
continue;
|
|
|
|
char *sockname = sk_get_name(sock.fd);
|
|
|
|
if (str_empty(sockname)) {
|
|
close(sock.fd);
|
|
continue;
|
|
}
|
|
|
|
gt_log("%s: connected\n", sockname);
|
|
|
|
sk_set_int(sock.fd, sk_nodelay, !delay);
|
|
sk_set_int(sock.fd, sk_keepalive, keepalive);
|
|
|
|
if (keepalive) {
|
|
if (ka_count>=0 && ka_count<=INT_MAX)
|
|
sk_set_int(sock.fd, sk_keepcnt, ka_count);
|
|
|
|
if (ka_idle>=0 && ka_idle<=INT_MAX)
|
|
sk_set_int(sock.fd, sk_keepidle, ka_idle);
|
|
|
|
if (ka_interval>=0 && ka_interval<=INT_MAX)
|
|
sk_set_int(sock.fd, sk_keepintvl, ka_interval);
|
|
}
|
|
|
|
sk_set_int(sock.fd, sk_user_timeout, gt.timeout);
|
|
sk_set(sock.fd, sk_congestion, congestion, str_len(congestion));
|
|
|
|
ctx.chacha = chacha;
|
|
|
|
if (gt_setup_crypto(&ctx, sock.fd, listener)) {
|
|
gt_log("%s: key exchange failed\n", sockname);
|
|
goto restart;
|
|
}
|
|
|
|
retry = 0;
|
|
|
|
state_send(gt.state_fd, "STARTED", tun_name);
|
|
|
|
fd_set rfds;
|
|
FD_ZERO(&rfds);
|
|
|
|
int stop_loop = 0;
|
|
|
|
buffer_format(&sock.write);
|
|
buffer_format(&sock.read);
|
|
|
|
while (1) {
|
|
if _0_(gt.quit)
|
|
stop_loop |= 1;
|
|
|
|
if _0_(stop_loop) {
|
|
if (((stop_loop&(1<<2)) || !buffer_read_size(&sock.write)) &&
|
|
((stop_loop&(1<<1)) || !buffer_read_size(&sock.read)))
|
|
goto restart;
|
|
FD_CLR(tun.fd, &rfds);
|
|
} else {
|
|
buffer_shift(&tun.read);
|
|
|
|
if (buffer_write_size(&tun.read)>=GT_MTU_MAX) {
|
|
FD_SET(tun.fd, &rfds);
|
|
} else {
|
|
FD_CLR(tun.fd, &rfds);
|
|
}
|
|
}
|
|
|
|
buffer_shift(&sock.read);
|
|
|
|
if (buffer_write_size(&sock.read)) {
|
|
FD_SET(sock.fd, &rfds);
|
|
} else {
|
|
FD_CLR(sock.fd, &rfds);
|
|
}
|
|
|
|
struct timeval timeout = {
|
|
.tv_usec = 100000,
|
|
};
|
|
|
|
if (buffer_read_size(&sock.write))
|
|
timeout.tv_usec = 1000;
|
|
|
|
if _0_(select(sock.fd+1, &rfds, NULL, NULL, &timeout)==-1) {
|
|
if (errno==EINTR)
|
|
continue;
|
|
perror("select");
|
|
return 1;
|
|
}
|
|
|
|
// TODO
|
|
// struct timeval now;
|
|
// gettimeofday(&now, NULL);
|
|
|
|
if (FD_ISSET(tun.fd, &rfds)) {
|
|
while (1) {
|
|
const size_t size = buffer_write_size(&tun.read);
|
|
|
|
if (size<GT_MTU_MAX)
|
|
break;
|
|
|
|
const ssize_t r = tun_read(tun.fd, tun.read.write, GT_MTU_MAX);
|
|
|
|
if (r<=0) {
|
|
gt.quit |= !r;
|
|
break;
|
|
}
|
|
|
|
struct ip_common ic;
|
|
|
|
if (ip_get_common(&ic, tun.read.write, GT_MTU_MAX))
|
|
continue;
|
|
|
|
if _0_(ic.size!=r) {
|
|
char tmp[2*GT_MTU_MAX+1];
|
|
gt_tohex(tmp, sizeof(tmp), tun.read.write, r);
|
|
gt_log("%s: DUMP %zi %s\n", sockname, r, tmp);
|
|
continue;
|
|
}
|
|
|
|
if _0_(debug) {
|
|
if (gt_track(&db, &ic, tun.read.write, 0))
|
|
continue;
|
|
}
|
|
|
|
tun.read.write += r;
|
|
}
|
|
}
|
|
|
|
buffer_shift(&sock.write);
|
|
|
|
if _1_(!stop_loop)
|
|
gt_encrypt(&ctx, &sock.write, &tun.read);
|
|
|
|
if (buffer_read_size(&sock.write)) {
|
|
const ssize_t r = fd_write(sock.fd, sock.write.read,
|
|
buffer_read_size(&sock.write));
|
|
|
|
if (r>0) {
|
|
sock.write.read += r;
|
|
} else if (!r) {
|
|
stop_loop |= (1<<2);
|
|
}
|
|
}
|
|
|
|
if _0_(stop_loop && !buffer_read_size(&sock.write)) {
|
|
if (!(stop_loop&(1<<2))) {
|
|
stop_loop |= (1<<2);
|
|
shutdown(sock.fd, SHUT_WR);
|
|
gt_log("%s: shutdown\n", sockname);
|
|
}
|
|
}
|
|
|
|
if (FD_ISSET(sock.fd, &rfds)) {
|
|
if (noquickack)
|
|
sk_set_int(sock.fd, sk_quickack, 0);
|
|
|
|
const ssize_t r = fd_read(sock.fd, sock.read.write,
|
|
buffer_write_size(&sock.read));
|
|
|
|
if (r>0) {
|
|
sock.read.write += r;
|
|
} else if (!r) {
|
|
stop_loop |= (1<<1);
|
|
}
|
|
}
|
|
|
|
buffer_shift(&tun.write);
|
|
|
|
if _0_(gt_decrypt(&ctx, &tun.write, &sock.read)) {
|
|
gt_log("%s: message could not be verified!\n", sockname);
|
|
goto restart;
|
|
}
|
|
|
|
while (1) {
|
|
size_t size = buffer_read_size(&tun.write);
|
|
|
|
if (!size)
|
|
break;
|
|
|
|
struct ip_common ic;
|
|
|
|
if (ip_get_common(&ic, tun.write.read, size) || ic.size>size) {
|
|
gt_log("%s: bad packet!\n", sockname);
|
|
goto restart;
|
|
}
|
|
|
|
if _0_(debug) {
|
|
if (gt_track(&db, &ic, tun.write.read, 1)) {
|
|
tun.write.read += ic.size;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ssize_t r = tun_write(tun.fd, tun.write.read, ic.size);
|
|
|
|
if (r>0) {
|
|
if (r==ic.size)
|
|
tun.write.read += r;
|
|
} else {
|
|
gt.quit |= !r;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
restart:
|
|
if (sock.fd!=-1) {
|
|
close(sock.fd);
|
|
sock.fd = -1;
|
|
}
|
|
|
|
state_send(gt.state_fd, "STOPPED", tun_name);
|
|
|
|
if (sockname) {
|
|
free(sockname);
|
|
sockname = NULL;
|
|
}
|
|
}
|
|
|
|
freeaddrinfo(ai);
|
|
|
|
free(sock.write.data);
|
|
free(sock.read.data);
|
|
|
|
free(tun.write.data);
|
|
free(tun.read.data);
|
|
|
|
return 0;
|
|
}
|