Files
glorytun/glorytun.c

722 lines
15 KiB
C

#include "common-static.h"
#include <stdio.h>
#include <signal.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>
#ifdef __linux__
# include <linux/if.h>
# include <linux/if_tun.h>
#endif
#include <sodium.h>
#define GT_BUFFER_SIZE (4*1024*1024)
struct option {
char *name;
void *data;
int (*call) (void *, int, char **);
};
struct netio {
int fd;
buffer_t recv;
buffer_t send; // TODO
};
struct crypto_ctx {
crypto_aead_aes256gcm_state state;
uint8_t nonce_w[crypto_aead_aes256gcm_NPUBBYTES];
uint8_t nonce_r[crypto_aead_aes256gcm_NPUBBYTES];
};
volatile sig_atomic_t running;
static void fd_set_nonblock (int fd)
{
int ret;
do {
ret = fcntl(fd, F_GETFL, 0);
} while (ret==-1 && errno==EINTR);
int flags = (ret==-1)?0:ret;
do {
ret = fcntl(fd, F_SETFL, flags|O_NONBLOCK);
} while (ret==-1 && errno==EINTR);
if (ret==-1)
perror("fcntl O_NONBLOCK");
}
static void sk_set_nodelay (int fd)
{
int val = 1;
if (setsockopt(fd, IPPROTO_TCP, TCP_NODELAY , &val, sizeof(val))==-1)
perror("setsockopt TCP_NODELAY");
}
static void sk_set_reuseaddr (int fd)
{
int val = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val))==-1)
perror("setsockopt SO_REUSEADDR");
}
static void sk_set_congestion (int fd, const char *name)
{
size_t len = str_len(name);
if (!len)
return;
#ifdef TCP_CONGESTION
if (setsockopt(fd, IPPROTO_TCP, TCP_CONGESTION, name, len+1)==-1)
perror("setsockopt TCP_CONGESTION");
#else
(void) fd;
#endif
}
static int sk_listen (int fd, struct addrinfo *ai)
{
sk_set_reuseaddr(fd);
int ret = bind(fd, ai->ai_addr, ai->ai_addrlen);
if (ret==-1) {
perror("bind");
return -1;
}
ret = listen(fd, 1);
if (ret==-1) {
perror("listen");
return -1;
}
return 0;
}
static int sk_connect (int fd, struct addrinfo *ai)
{
int ret = connect(fd, ai->ai_addr, ai->ai_addrlen);
if (ret==-1 && errno==EINTR)
return 0;
return ret;
}
static int sk_create (struct addrinfo *res, int(*func)(int, struct addrinfo *))
{
for (struct addrinfo *ai=res; ai; ai=ai->ai_next) {
int fd = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
if (fd==-1)
continue;
if (func(fd, ai)!=-1)
return fd;
close(fd);
}
return -1;
}
static int sk_accept (int fd)
{
struct sockaddr_storage addr_storage;
struct sockaddr *addr = (struct sockaddr *)&addr_storage;
socklen_t addr_size = sizeof(addr_storage);
int ret = accept(fd, addr, &addr_size);
if (ret==-1 && errno!=EINTR)
perror("accept");
return ret;
}
#ifdef __linux__
static int tun_create (char *name)
{
int fd = open("/dev/net/tun", O_RDWR);
if (fd<0) {
perror("open /dev/net/tun");
return -1;
}
struct ifreq ifr = {
.ifr_flags = IFF_TUN|IFF_NO_PI,
};
str_cpy(ifr.ifr_name, name, IFNAMSIZ-1);
int ret = ioctl(fd, TUNSETIFF, &ifr);
if (ret<0) {
perror("ioctl TUNSETIFF");
return -1;
}
printf("tun name: %s\n", ifr.ifr_name);
return fd;
}
#else
static int tun_create (char *name)
{
(void) name;
for (unsigned dev_id = 0U; dev_id < 32U; dev_id++) {
char dev_path[11U];
snprintf(dev_path, sizeof(dev_path), "/dev/tun%u", dev_id);
int fd = open(dev_path, O_RDWR);
if (fd!=-1)
return fd;
}
return -1;
}
#endif
static void gt_sa_stop (int sig)
{
switch (sig) {
case SIGINT:
case SIGTERM:
running = 0;
}
}
static void gt_set_signal (void)
{
struct sigaction sa;
byte_set(&sa, 0, sizeof(sa));
running = 1;
sa.sa_handler = gt_sa_stop;
sigaction(SIGINT, &sa, NULL);
sigaction(SIGTERM, &sa, NULL);
sa.sa_handler = SIG_IGN;
sigaction(SIGHUP, &sa, NULL);
sigaction(SIGPIPE, &sa, NULL);
}
static ssize_t fd_read (int fd, void *data, size_t size)
{
if (!size)
return -2;
ssize_t ret = read(fd, data, size);
if (ret==-1) {
if (errno==EAGAIN || errno==EINTR)
return -1;
if (errno)
perror("read");
return 0;
}
return ret;
}
static ssize_t fd_write (int fd, const void *data, size_t size)
{
if (!size)
return -2;
ssize_t ret = write(fd, data, size);
if (ret==-1) {
if (errno==EAGAIN || errno==EINTR)
return -1;
if (errno)
perror("write");
return 0;
}
return ret;
}
static ssize_t fd_read_all (int fd, void *data, size_t size)
{
size_t done = 0;
struct pollfd pollfd = {
.fd = fd,
.events = POLLIN,
};
while (done<size) {
ssize_t ret = fd_read(fd, data+done, size-done);
if (!ret)
break;
if (ret<0) {
poll(&pollfd, 1, -1);
continue;
}
done += ret;
}
return done;
}
static ssize_t fd_write_all (int fd, const void *data, size_t size)
{
size_t done = 0;
struct pollfd pollfd = {
.fd = fd,
.events = POLLOUT,
};
while (done<size) {
ssize_t ret = fd_write(fd, data+done, size-done);
if (!ret)
break;
if (ret<0) {
poll(&pollfd, 1, -1);
continue;
}
done += ret;
}
return done;
}
static int encrypt_packet (struct crypto_ctx *ctx, uint8_t *packet, size_t size, buffer_t *buffer)
{
const size_t ws = size + crypto_aead_aes256gcm_ABYTES;
if (buffer_write_size(buffer) < ws)
return 1;
const int hs = 4;
byte_cpy(buffer->write, packet, size);
crypto_aead_aes256gcm_encrypt_afternm(
buffer->write + hs, NULL,
packet + hs, size - hs,
packet, hs,
NULL, ctx->nonce_w,
(const crypto_aead_aes256gcm_state *)&ctx->state);
sodium_increment(ctx->nonce_w, crypto_aead_aes256gcm_NPUBBYTES);
buffer->write += ws;
return 0;
}
static int decrypt_packet (struct crypto_ctx *ctx, uint8_t *packet, size_t size, buffer_t *buffer)
{
const size_t rs = size + crypto_aead_aes256gcm_ABYTES;
if (buffer_read_size(buffer) < rs)
return 1;
const int hs = 4;
byte_cpy(packet, buffer->read, hs);
if (crypto_aead_aes256gcm_decrypt_afternm(
packet + hs, NULL,
NULL,
buffer->read + hs, rs - hs,
packet, hs,
ctx->nonce_r,
(const crypto_aead_aes256gcm_state *)&ctx->state))
return -1;
sodium_increment(ctx->nonce_r, crypto_aead_aes256gcm_NPUBBYTES);
buffer->read += rs;
return 0;
}
static int option_flag (void *data, _unused_ int argc, _unused_ char **argv)
{
const int one = 1;
byte_cpy(data, &one, sizeof(one));
return 0;
}
static int option_str (void *data, int argc, char **argv)
{
if (argc<2 || !argv[1]) {
printf("option `%s' need a string argument\n", argv[0]);
return -1;
}
byte_cpy(data, &argv[1], sizeof(argv[1]));
return 1;
}
_unused_
static int option_long (void *data, int argc, char **argv)
{
if (argc<2 || !argv[1]) {
printf("option `%s' need an integer argument\n", argv[0]);
return -1;
}
errno = 0;
char *end;
long val = strtol(argv[1], &end, 0);
if (errno || argv[1]==end) {
printf("argument `%s' is not a valid integer\n", argv[1]);
return -1;
}
byte_cpy(data, &val, sizeof(val));
return 1;
}
static int option_option (void *data, int argc, char **argv)
{
struct option *opt = (struct option *)data;
for (int i=1; i<argc; i++) {
int found = 0;
for (int k=0; opt[k].name; k++) {
if (str_cmp(opt[k].name, argv[i]))
continue;
int ret = opt[k].call(opt[k].data, argc-i, &argv[i]);
if (ret<0)
return -1;
i += ret;
found = 1;
break;
}
if (!found)
return i-1;
}
return argc;
}
static int option (struct option *opts, int argc, char **argv)
{
int ret = option_option(opts, argc, argv);
if (ret==argc)
return 0;
if (ret>=0)
printf("option `%s' is unknown\n", argv[ret+1]);
return 1;
}
static void set_ip_size (uint8_t *data, size_t size)
{
data[2] = 0xFF&(size>>8);
data[3] = 0xFF&(size);
}
static ssize_t get_ip_size (const uint8_t *data, size_t size)
{
if (size<20)
return -1;
if ((data[0]>>4)==4)
return (data[2]<<8)|data[3];
return 0;
}
static void gt_setup_crypto (struct crypto_ctx *ctx, int fd, int listener)
{
unsigned char secret[crypto_scalarmult_SCALARBYTES];
unsigned char shared[crypto_scalarmult_BYTES];
unsigned char public_w[crypto_scalarmult_SCALARBYTES];
unsigned char public_r[crypto_scalarmult_SCALARBYTES];
unsigned char key[crypto_aead_aes256gcm_KEYBYTES];
randombytes_buf(secret, sizeof(secret));
crypto_scalarmult_base(public_w, secret);
if (!listener)
fd_write_all(fd, public_w, sizeof(public_w));
fd_read_all(fd, public_r, sizeof(public_r));
if (listener)
fd_write_all(fd, public_w, sizeof(public_w));
crypto_scalarmult(shared, secret, public_r);
crypto_generichash_state state;
crypto_generichash_init(&state, NULL, 0, sizeof(key));
crypto_generichash_update(&state, shared, sizeof(shared));
crypto_generichash_update(&state, listener?public_w:public_r, sizeof(public_w));
crypto_generichash_update(&state, listener?public_r:public_w, sizeof(public_w));
crypto_generichash_final(&state, key, sizeof(key));
crypto_aead_aes256gcm_beforenm(&ctx->state, key);
sodium_memzero(secret, sizeof(secret));
sodium_memzero(shared, sizeof(shared));
sodium_memzero(public_w, sizeof(public_w));
sodium_memzero(public_r, sizeof(public_r));
sodium_memzero(key, sizeof(key));
randombytes_buf(ctx->nonce_w, sizeof(ctx->nonce_w));
fd_write_all(fd, ctx->nonce_w, sizeof(ctx->nonce_w));
fd_read_all(fd, ctx->nonce_r, sizeof(ctx->nonce_r));
}
int main (int argc, char **argv)
{
gt_set_signal();
char *host = NULL;
char *port = "5000";
char *dev = "glorytun";
int listener = 0;
char *congestion = NULL;
struct option opts[] = {
{ "dev", &dev, option_str },
{ "host", &host, option_str },
{ "port", &port, option_str },
{ "listener", &listener, option_flag },
{ "congestion", &congestion, option_str },
{ NULL },
};
if (option(opts, argc, argv))
return 1;
if (sodium_init()==-1) {
printf("libsodium initialization has failed!\n");
return -1;
}
if (!crypto_aead_aes256gcm_is_available()) {
printf("AES-256-GCM is not available on your platform!\n");
return -1;
}
struct addrinfo hints = {
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_STREAM,
.ai_protocol = IPPROTO_TCP,
};
if (listener)
hints.ai_flags = AI_PASSIVE;
struct addrinfo *ai = NULL;
if (getaddrinfo(host, port, &hints, &ai)) {
printf("host not found\n");
return 1;
}
struct netio tun = { .fd = -1 };
struct netio sock = { .fd = -1 };
tun.fd = tun_create(dev);
if (tun.fd==-1)
return 1;
fd_set_nonblock(tun.fd);
buffer_setup(&tun.recv, NULL, GT_BUFFER_SIZE);
buffer_setup(&sock.recv, NULL, GT_BUFFER_SIZE);
int fd = -1;
if (listener) {
fd = sk_create(ai, sk_listen);
if (fd==-1)
return 1;
}
while (running) {
sock.fd = listener?sk_accept(fd):sk_create(ai, sk_connect);
if (sock.fd==-1) {
usleep(100000);
continue;
}
fd_set_nonblock(sock.fd);
sk_set_nodelay(sock.fd);
sk_set_congestion(sock.fd, congestion);
struct crypto_ctx ctx;
gt_setup_crypto(&ctx, sock.fd, listener);
printf("running...\n");
struct pollfd fds[] = {
{ .fd = tun.fd, .events = POLLIN },
{ .fd = sock.fd, .events = POLLIN },
};
struct {
uint8_t buf[2048];
size_t size;
} tunr, tunw;
tunr.size = 0;
tunw.size = 0;
while (running) {
if (poll(fds, COUNT(fds), -1)==-1 && errno!=EINTR) {
perror("poll");
return 1;
}
buffer_shift(&tun.recv);
if (fds[0].revents & POLLIN) {
while (1) {
if (buffer_write_size(&tun.recv)<sizeof(tunr.buf)+16)
break;
ssize_t r = fd_read(fds[0].fd, tunr.buf, sizeof(tunr.buf));
if (!r)
return 2;
if (r<0)
break;
ssize_t ip_size = get_ip_size(tunr.buf, sizeof(tunr.buf));
if (ip_size<=0 || r>ip_size)
continue;
if (r<ip_size)
set_ip_size(tunr.buf, r);
encrypt_packet(&ctx, tunr.buf, r, &tun.recv);
}
}
if (fds[1].revents & POLLOUT)
fds[1].events = POLLIN;
if (buffer_read_size(&tun.recv)) {
ssize_t r = fd_write(fds[1].fd, tun.recv.read, buffer_read_size(&tun.recv));
if (!r)
goto restart;
if (r==-1)
fds[1].events = POLLIN|POLLOUT;
if (r>0)
tun.recv.read += r;
}
buffer_shift(&sock.recv);
if (fds[1].revents & POLLIN) {
ssize_t r = fd_read(fds[1].fd, sock.recv.write, buffer_write_size(&sock.recv));
if (!r)
goto restart;
if (r>0)
sock.recv.write += r;
}
if (fds[0].revents & POLLOUT)
fds[0].events = POLLIN;
while (1) {
if (!tunw.size) {
size_t size = buffer_read_size(&sock.recv);
ssize_t ip_size = get_ip_size(sock.recv.read, size);
if (!ip_size)
goto restart;
if (ip_size<0 || (size_t)ip_size+16>size)
break;
if (decrypt_packet(&ctx, tunw.buf, ip_size, &sock.recv)) {
printf("message could not be verified!\n");
goto restart;
}
tunw.size = ip_size;
}
if (tunw.size) {
ssize_t r = fd_write(fds[0].fd, tunw.buf, tunw.size);
if (!r)
return 2;
if (r==-1)
fds[0].events = POLLIN|POLLOUT;
if (r<0)
break;
tunw.size = 0;
}
}
}
restart:
close(sock.fd);
sock.fd = -1;
}
if (ai)
freeaddrinfo(ai);
free(tun.recv.data);
free(sock.recv.data);
return 0;
}